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Abstract —Analysis of heart rate variabilily requires the calculation
of the mean heart rate. Adaptive methods are important for online
and real-time parameter estimation. In this paper, we demonstrate
the use of Kalman filtering to estimate adaptively the mean heart
rate and remove the trend.
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1. INTRODUCTION

Analysis of heart rate varability (HRV) requires several
processing steps. After the QRS detection and the calculations
of the R-to-R intervals (RRI), the mean of the RRI is removed
and the spectrum is estimated. In case of an online and real-
time - analysis, the estimation of the mean value must be based
on past values only, since no future sample values can be used.
In order to improve the computational efficiency, adaptive
algorithms are appropriate for estimating the mean value of
HRV.

1I. METHODOLOGY

Before Kalman filtering is introduced, we would like to
review a basic adaptive algorithm. The mean can be calculated
adaptively as follows:

Hy=(1-UC) . g + UC. ¥ (1)

y() is the actual sample value (e.g. the inverse R-R-
Interval) at sample k; UC denotes the update coefficient and
determines the degree of adaptation. In Eq. (1), only past values
are used and at each time instant, the previous estimate is

updated. In essence describes Eq. (1) an adaptive smoothing
filter.

The state space model and Kalman filtering

An alternative method to the adaptive filter is to use Kalman
filtering. For this purpose, we introduce the state space model
(SSM) with the system ([1] p. 102)

Xk = Fk - Xk + Wi

wi=N(0, W) (2a)
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and the measurement equation

Iy = Hk X Vg V= N(O,Vk) (2b)
The properties of the state space model are determined by the
matrices F and H. uy is the system input, w, and v, are
uncorrelated random noise processes with covariances W and
V, respectively. x, represents the (hidden) state vector, z is the
observed system output at time instant k.

Kalman filtering estimates the hidden state variable x, in a
recursive way with the following equations ([1] p. 112):

State estimation extrapolation;

Xl) =Fi - Xial+) (3a)
Error covariance extrapolation

Pi-) = Fir . Pii(#) . Foy T+ Wy (3b)
State estimation observational update;

x+) = x3() + Ky [z - Hee . % ()] (3¢)
Error covariance update

Pu+)=[1-Ki. Hod . Pey(-) 3d
Kalman gain

Ki=P(-). B/ [He . P} H T+ Vi (3e)

The initial conditions are determined by xo and its covariance
P,.

In the next step, we build a state space model for the mean
heart rate. Here, we determine the best estimate of the mean
heart rate. Since the unknown variable x; represents the mean
estimate: X, = py

There is no further information about the mean. Therefore,
we assume the mean follows a random walk process. Hence, Fy
=1, Me= Mg+ Wy

The difference between the estimate x; and the actual
observation z, can be assumed to be random and uncorrelated;
hence Hy = 1,

The following update equations for the adaptive estimation
of the mean can be determined as follows:

€ =2y ~ Hi. (4a)
Mi = s + K. € (4b)
Pri=Pui+ Wy (4c)
Ki=Piy /[Pra+ Vil (4d)
Py=[1-Ki]. Py, (4e)
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V | represents the variance of the prediction error and W,
represent variance of the random walk, Because these
parameters are usually unknown, some assumptions about their
behavior can be done. As shown in [2] different assumptions
can be made, including the one below (Mode al2v3):

(5a)
(5b)

V, = (1-UC)
Wk = UCZ*I

II1. Results

In this paper we tested the Kalman filter on both the
simulated and the HRV,

Simulation

Both methods, the adaptive smoothing filter and Kalmar
filtering, were applied to the following test series. The
simulated signal has 4 epochs with 100 samples each; eact
epoch is a white noise process with a rms=3 and a mean valus
of 60, 100, 100, and 80 for the epochs 1, 2, 3 and 4.
respectively. In the third epoch the mean was increased linearly
from 50 to 150.
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Fig 1: Simulation, The simulated data is display in the first plot, The sccond
plots show the adaptive mean estimated with Kalman filter (dark) and
exponential window (light). The third plot shows the one-step prediction error
for Kalman filter (dark) and the exponential window {light}. The update
coefficient UC was in both cases 0.05.

The simulated signal y was analyzed using the adaptive
smoothing as well as Kalman filtering. In both cases an update
coefficient UC=0.05 was used. Fig ] shows the simulated data,
the estimated adaptive mean and the residual processes from
both methods.

Heart rate variability data
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Figure 2: Heart rate variability (blue), adaptive mean (green) and the one-step
prediction error (red). The prediction error is also the de-trended HRYV.
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Figure 3: Time-varying smc!hm based on AAR estimates of the de-trended
Heart-rate variability.

In addition to the simulated data, HRV data during a tilting-
table experiment was recorded (Fig. 3). Between sample 400
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and sample 1100 passive head up tilt was applied to the subject.
Due to passive head up tilt, the Heart Rate increased between
samples 400 and 1100 from 0.9 to 1.2 Hz (54 to 72 bpm) (Fig.
2).

Our results based on 13 HRV data set showed that Kalman
filtering with Mode=ai2v3 and UC=0.0605 can be used to
estimate the mean heart rate and the autoregressive parameters
adaptively.

Fig 3 shows a time-varying spectral density function of
HRV using adaptive avtoregressive (AAR) parameters. Note
that the Nyquist frequency changes according to the mean heart
rate since the mean heart rate can be considered as the mean
sampling rate of the HRV.

1V. DISCUSSION

In this paper we have shown how Kalman filtering can be
used to estimate adaptively the time-varying mean of non-
stationary time series. A comparison between Kalman filtering
and exponential smoothing was done on simulated data.
However, to compare both methods in an objective manner, the
adaptation speed and the estimation accuracy need to be
compared  simultaneously.  Furthermore, the optimal
assumptions about the variances of the system and observation
noise (Vk and Wk) must be made.

Kalman filtering was also applied to estimate the adaptive
mean and the de-trended heart-rate-variability. This is
important for the on-line and real-time analysis of the HRV-
spectrum. The time-varying HRV-spectra (as shown in Fig. 3)
can be also estimated with adaptive autoregressive methods.

Kalman filtering can be used to estimate the adaptive mean
and to remove the trend of HRV data. We believe that Kalman
filtering can be applied to other non-stationary biological
systems, too.
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