
Proceedings of Machine Learning Research vol 75:1–22, 2018 31st Annual Conference on Learning Theory

A Faster Approximation Algorithm for the Gibbs Partition Function

Vladimir Kolmogorov VNK@IST.AC.AT

IST Austria, Am Campus 1, Klosterneuburg 3400, Austria

Editors: Sebastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract
We consider the problem of estimating the partition functionZ(β) =

∑
x exp(−βH(x)) of a Gibbs

distribution with a Hamilton H(·), or more precisely the logarithm of the ratio q = lnZ(0)/Z(β).
It has been recently shown how to approximate q with high probability assuming the existence of
an oracle that produces samples from the Gibbs distribution for a given parameter value in [0, β].
The current best known approach due to Huber (2015) uses O(q lnn · [ln q+ ln lnn+ ε−2]) oracle
calls on average where ε is the desired accuracy of approximation and H(·) is assumed to lie in
{0} ∪ [1, n]. We improve the complexity to O(q lnn · ε−2) oracle calls. We also show that the
same complexity can be achieved if exact oracles are replaced with approximate sampling oracles
that are within O(ε2

q lnn) variation distance from exact oracles. Finally, we prove a lower bound of
Ω(q · ε−2) oracle calls under a natural model of computation.
Keywords: Gibbs distribution, partition function, approximation

1. Introduction

It is known that for large classes of problems, e.g. self-reducible problems (Jerrum et al., 1986),
there is an intimate connection between approximate counting and sampling: the ability to solve one
problem allows solving the other one. This paper explores this connection for Gibbs distributions.

Let Ω be some finite set and H(·) be some real-valued function on Ω called a Hamiltonian. The
Gibbs distribution for such a system is a family of distributions {µβ} on Ω parameterized by β,
where

µβ(x) =
1

Z(β)
exp(−βH(x)) ∀x ∈ Ω (1)

The normalizing constant Z(β) is called the partition function:

Z(β) =
∑
x∈Ω

exp(−βH(x)) (2)

Estimating this function for a given value of β is a widely studied computational problem with appli-
cations in many areas. In particular, it is a key computational task in statistical physics. Evaluations
of Z(·) yield estimates of important thermodynamical quantities, such as the free energy. Note,
parameter β corresponds to the inverse temperature. A classical example of a Gibbs distribution in
physics is the Ising model.

Example 1 Given an undirected graph (V,E), let Ω = {−1,+1}V and H(x) =
∑
{i,j}∈E [xi 6=

xj] where [·] is 1 if its argument is true, and 0 otherwise. Distribution (1) for such a Hamiltonian
is called the Ising model. It is ferromagnetic if β > 0, and antiferromagnetic if β < 0 (although

c© 2018 V. Kolmogorov.

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

in the latter case the function H ′(x) = −H(x) is usually treated as the Hamiltonian). Computing
Z(β) exactly is a #P-complete problem, and is even hard to approximate in the antiferromagnetic
case (Jerrum and Sinclair, 1993).

The problem of counting various combinatorial objects such as proper k-coloring and matchings in
graphs can also be naturally phrased as estimating the partition function.

Example 2 Let Ω = {1, . . . , k}|V | be the set of all colorings in an undirected graph G = (V,E).
Define H(x) =

∑
{i,j}∈E [xi = xj], then Z(+∞) gives the number of proper k-colorings.

Example 3 Let Ω be the set of matchings M ⊆ E in an undirected graph G = (V,E). Define
H(M) = |M |, then Z(0) = |Ω|.

A related problem is that of sampling from the distribution µβ for a given value of β. There
is a vast literature on designing sampling algorithms from Gibbs distributions, see e.g. (Metropolis
et al., 1953; Swendsen and Wang, 1986; Huber, 2004; Fill and Huber, 2010) or (Brooks et al., 2011)
for an overview. Here we only mention some known results related to Examples 1-3.
(1) For the ferromagnetic Ising model there exists an exact sampling algorithm that appears to run
efficiently at or above the critical temperature (Propp and Wilson, 1996). There are also polynomial-
time approximate samplers for related models, namely the Subgraphs-World model (Jerrum and
Sinclair, 1993) and the Random Cluster model (Guo and Jerrum, 2018). These are probability
distribution over subsets of edges S ⊆ E defined in such as a way that the corresponding partition
functions equal the partition function of the ferromagnetic Ising model up to easily computable
constants. The result of Guo and Jerrum (2018) has two implications: (i) the Swendsen-Wang
dynamics for the ferromagnetic Ising model is rapidly mixing; (ii) applying the Coupling-from-the-
Past technique (Propp and Wilson, 1996) to the Random Cluster dynamics (which is monotonic)
gives a polynomial-time exact sampler.
(2) Approximate sampling of k-colorings in low-degree graphs is addressed in (Jerrum, 1995;
Vigoda, 1999) (for β = +∞, though techniques are potentially extendable to other values of β).
(3) For matchings polynomial-time approximate sampling is presented in (Jerrum and Sinclair,
1989) (for β = +∞) and in (Matthews, 2008, Section 2.3.5).

It is known that the ability to sample can be used for designing a randomized approximation
scheme for estimating the partition function. By definition, it is an algorithm that for a given ε > 0

produces an estimate Q̂ of the desired quantity Q such that Q̂ ∈
[
Q

1+ε , Q(1 + ε)
]

with probability
at least 3/4. (The value 3/4 is arbitrary: by repeating the algorithm multiple times and taking the
median of the outputs the probability can be boosted to any other constant in (0, 1)). This paper
studies the following question: how many samples are needed to approximate Z(β) with a given
accuracy ε?
Formal description To state the complexity of different approaches, we need to introduce several
quantities. First, we assume that H(x) ∈ {0} ∪ [1, n] for any x ∈ Ω where n is a known number.
Non-negativity of the Hamiltonian implies that Z(·) is a decreasing function. Our goal will be to
estimate the ratio Q = Z(βmin)/Z(βmax) for given values βmin < βmax. Note that computing
Z(β) for some specific value of β is usually an easy task, so this will allow estimating Z(β) for any
other β. In particular, in Examples 1, 2 and 3 we have Z(0) = 2|V |, Z(0) = k|V | and Z(+∞) = 1
respectively.

2

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Let us denote q = logQ, and assume that there exists an oracle that can produce a sample
X ∼ µβ for a given value β ∈ [βmin, βmax]. When stating asymptotic complexities, we will always
assume that q = Ω(1), n = 1 + Ω(1) and ε = O(1) to simplify the expressions. Bezáková et al.
(2008) showed that Q can be estimated using O(q2(lnn)2) oracle calls in the worst case (for a fixed
ε). This was improved to O(q(ln q + lnn)5ε−2) expected number of calls by Štefankovič et al.
(2009) and then to O(q lnn · [ln q + ln lnn+ ε−2]) by Huber (2015).1

The first contribution of this paper is to improve the complexity further to O(q lnn · ε−2) oracle
calls (on average). This is achieved by a better analysis of the algorithm in (Huber, 2015). The
formal statement of our result is given in Section 3 as Theorems 6 and 8.

In many applications we only have an access to approximate sampling oracles. Using a stan-
dard coupling argument, in Section 3.1 we show that the same complexity can be achieved with
approximate oracles assuming that they are within O(ε2

q lnn) variation distance from exact oracles.
As our final contribution, we prove a lower bound of Ω(q · ε−2) oracle calls under a natural

model of computation. The precise statement of the result is given as Theorem 10 in Section 3.2.
To our knowledge, this is the first lower bound for this problem. We are only aware of a lower
bound for a specific class of algorithms, namely those based on O(1)-Chebyshev cooling schedules.
Such schedule can be used to estimate the desired quantity using Θ(`2/ε2) oracle calls, where ` is
the length of the schedule. Štefankovič et al. (2009) proved that ` = Ω(q log n) for a non-adaptive
schedule and ` = Ω(

√
n) for an adaptive schedule. Note that algorithms in (Huber, 2015) and

in the current paper are not based on O(1)-Chebyshev schedules, and therefore this lower bound
does not apply to them. In contrast, our model covers a very general class of algorithms; the only
essential assumption is that the algorithm receives values H(x) from the oracle, and not states x
(see Section 3.2).

Remark 1 The assumption that H(·) lies in {0} ∪ [1, n] can be relaxed using a standard trick.
Suppose, for example, that H(x) ∈ {hmin, hmin + 1, . . . , hmax} where hmin and hmax are known
integers. Let n = hmax − hmin. We claim that the problem can be solved using O(q′ lnn · ε−2)
oracle calls (on average), where either (i) q′ = q− (βmax−βmin) ·hmin, or (ii) q′ = −q+ (βmax−
βmin) · hmax.

Indeed, to achieve the first complexity, define new Hamiltonian H ′(x) = H(x) − hmin. The
partition function for the new problem is Z ′(β) = eβhmin · Z(β), and so q′ is as defined in (i). (We
use “primes” to denote all quantities related to the new problem). We have H ′(x) ∈ {0, 1, . . . , n},
so the algorithm claimed above can be applied to give an estimate of q′ and thus of q. Note that
distributions µ′β and µβ coincide, and so sampling from µβ allows to sample from µ′β .

To achieve the second complexity, define H ′(x) = −H(x) + hmax and also change the bounds:
β′min = −βmax and β′max = −βmin. There holds Z ′(β) = e−βhmax · Z(−β), and q′ is as defined
in (ii). We again have H ′(x) ∈ {0, 1, . . . , n}, and distributions µ′β and µ−β coincide. We can now
use the same argument as before.

1. The O(q ln q) algorithm (for fixed n, ε) was first announced in (Huber and Schott, 2011, Section 7) and appeared
online in (Huber, 2012). Improving the complexity from O(q ln q) to O(q) was posed as an open problem in (Huber
and Schott, 2011, Section 7).

3

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

2. Background and preliminaries

We will assume for simplicity that H(·) 6= const. Let us denote z(β) = lnZ(β). It can be easily
checked that

z′(β) = EX∼µβ [−H(X)]

Since H(·) is non-negative and non-constant, we have z′(β) < 0 for any β and thus z(·) and Z(·)
are strictly decreasing functions. It is also known (Wainwright and Jordan, 2008, Proposition 3.1)
that function z(·) is convex for any H(·), and in fact strictly convex if H(·) 6= const.

Next, we discuss previous approaches for estimating Z(βmin)/Z(βmax), closely following Hu-
ber (2015).

It is well-known that for given values β1, β2 an unbiased estimator W of Z(β2)/Z(β1) can be
obtained as follows: first sample X ∼ µβ1 and then set W = exp((β1 − β2)H(X)). Indeed,

E[W] =
∑
x∈Ω

exp(−β1H(x))

Z(β1)
· exp((β1 − β2)H(x)) =

∑
x∈Ω

exp(−β2H(x))

Z(β1)
=
Z(β2)

Z(β1)

Applying this estimator directly to (β1, β2) = (βmin, βmax) or to (β1, β2) = (βmax, βmin) is prob-
lematic since it usually has a huge relative variance. A standard approach to reduce the relative
variance is via the multistage sampling method of Valleau and Card (1972). First, a sequence
βmin = β0 ≤ β1 ≤ . . . ≤ β` = βmax is selected; it is called a cooling schedule. We then have

Z(βmin)

Z(βmax)
=
Z(β0)

Z(β1)
· Z(β1)

Z(β2)
· . . . · Z(β`−1)

Z(β`)

Throughout the paper we refer to [βi, βi+1] as “interval i”, where i ∈ {0, 1, . . . , ` − 1}. The
ratio Z(βi)/Z(βi+1) for each such interval can be estimated independently as described above,
and then multiplied to give the final estimate. Fishman calls an estimate of this form a product
estimator (Fishman, 1994). Its mean and variance are given by the lemma below. In this lemma
we use the following notation: if X is a random variable then S[X]

def
= E[X2]

(E[X])2
= Var(X)

(E[X])2
+ 1 (the

relative variance of X plus 1).

Lemma 2 ((Dyer and Frieze, 1991, page 136)) For P =
∏
i Pi where the Pi are independent,

E[P] =
∏
i

E[Pi], S[P] =
∏
i

S[Pi]

Using a fixed cooling schedule, Bezáková et al. (2008) obtained an approximation algorithm
that needs O(q2(lnn)2) samples in the worst case (for a fixed ε). Štefankovič et al. (2009) asymp-
totically improved this to 108q(ln q+lnn)5ε−2 samples on average. They used an adaptive cooling
schedule where the values βi depend on the outputs of sampling oracles. A further improvement to
O(q lnn · [ln q+ ln lnn+ ε−2]) was given by Huber (2015). One of the key ideas in (Huber, 2015)
was to replace the product estimator with the paired product estimator, which is described next.

2.1. Paired product estimator

One run of this estimator can be described as follows:

• sample Xi ∼ µβi for each i ∈ [0, `]

4

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

• for each interval i ∈ [0, `− 1] compute

Wi = exp(− βi+1−βi
2 H(Xi)), Vi = exp(βi+1−βi

2 H(Xi+1))

• compute W =
∏
iWi and V =

∏
i Vi.

An easy calculation (see (Huber, 2015)) shows that

E[Wi] =
Z(β̄i,i+1)

Z(βi)
, E[Vi] =

Z(β̄i,i+1)

Z(βi+1)
, E[Vi]/E[Wi] =

Z(βi)

Z(βi+1)
, E[V]/E[W] =

Z(βmin)

Z(βmax)

where we denoted β̄i,i+1 = βi+βi+1

2 . Also,

S[Wi] = S[Vi] =
Z(βi)Z(βi+1)

Z(β̄i,i+1)2
, S[W] = S[V] =

∏
i

Z(βi)Z(βi+1)

Z(β̄i,i+1)2
(3)

Although E[V]/E[W] = Z(βmin)
Z(βmax) = Q, using V/W as the estimator of Q would be a poor choice

since it is biased in general. Instead, Huber (2015) uses the following procedure.

Algorithm 1 Paired product estimator. Input: schedule (β0, . . . , β`), integer r ≥ 1.
1: compute r independent samples of (W,V) as described above
2: take their sample averages W̄ and V̄ and output Q̂ = V̄ /W̄ as the estimator of Q

The argument from (Huber, 2015) gives the following result.

Lemma 3 Suppose that

S[W] = S[V] ≤ 1 + 1
2γrε̃

2 (4)

where ε̃ = 1− (1 + ε)−1/2 = 1
2ε+O(ε2) and γ > 0. Then P(Q̂/Q ∈ (1

1+ε , 1 + ε)) ≥ 1− γ.

Proof We have E[W̄] = E[W] and Var(W̄) = 1
rVar(W), and so S[W̄] = 1

r (S[W] − 1) + 1. By
Chebyshev’s inequality, P(|W̄/E[W̄] − 1| ≥ ε̃) ≤ (S[W̄] − 1)/ε̃ 2 = 1

r (S[W] − 1)/ε̃ 2 ≤ γ/2.
Similarly, P(|V̄ /E[V̄]− 1| ≥ ε̃) ≤ γ/2.

Denote S = W̄/E[W̄] and T = V̄ /E[V̄]. The union bound gives P(max{|S − 1|, |T − 1|} ≥
ε̃) ≤ γ. Observe that condition max{|S − 1|, |T − 1|} < ε̃ implies {S, T} ⊂ (1 − ε̃, 1 + ε̃) ⊆
(1

(1+ε)1/2
, (1 + ε)1/2) and thus Q̂

Q = T
S ∈ (1

1+ε , 1 + ε). The claim follows.

Recall that S[W] = S[V] is a deterministic function of the schedule (β0, . . . , β`) (see eq. (3)).
We say that the schedule is good (with respect to fixed constants r and γ) if the resulting quantity
S[W] = S[V] satisfies (4). Huber (2015) presented a randomized algorithm that produces a good
schedule with probability at least 0.95 (with respect to r = Θ(ε−2) and γ = 0.2). By Lemma 3, the
output Q̂ of the resulting algorithm lies in (Q

1+ε , Q(1 + ε)) with probability at least 0.95 · (1− γ) >
0.75, as desired.

Huber’s algorithm for producing schedule (β0, . . . , β`) is reviewed in the next section. It makes
O(q lnn·[ln q+ln lnn]) calls to the sampling oracle (on average). Then in Section 3 we will describe
how to reduce the number of oracle calls to O(q lnn) while maintaining the desired guarantees.

5

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

2.2. TPA method

The algorithm of Huber (2015) for producing a schedule is based on the TPA method of Huber and
Schott (2010, 2014). (The abbreviation stands for the “Tootsie Pop Algorithm”). Let us review the
application of the method to the Gibbs distribution with a non-negative Hamiltonian H(·).

Its key subroutine is procedure TPAstep(β) that for a given constant β produces a random
variable in [β,+∞] as follows:

• sample X ∼ µβ , draw U ∈ [0, 1] uniformly at random, return β − lnU/H(X) (or +∞ if
H(X)=0).

The motivation for this sampling rule comes from the following fact (which we prove here for
completeness).

Lemma 4 Consider random variable Y = Z(TPAstep(β)). If H(·) is strictly positive (implying
that Z(+∞) = 0) then Y has the uniform distribution on [0, Z(β)]. If H(x) = 0 for some x ∈ Ω
(implying that Z(+∞) > 0)) then Y has the same distribution as the following random variable
Y ′: sample Y ′ ∈ [0, Z(β)] uniformly at random and set Y ′ ← max{Y ′, Z(+∞)}.

Proof It suffices to prove P(TPAstep(β) ≥ α) = Z(α)/Z(β) for any α ∈ [β,+∞). We have

[TPAstep(β) ≥ α] = [lnU/H(X) ≤ β−α] = [lnU ≤ (β−α)H(X)] = [U ≤ exp((β−α)H(X))]

Therefore,

P(TPAstep(β) ≥ α) =
∑
x∈Ω

P(TPAstep(β) ≥ α|X = x)P(X = x)

=
∑
x∈Ω

P(U ≤ exp((β − α)H(x))) · exp(−βH(x))

Z(β)

=
∑
x∈Ω

exp((β − α)H(x)) · exp(−βH(x))

Z(β)

=
∑
x∈Ω

exp(−αH(x))

Z(β)
=

Z(α)

Z(β)

Roughly speaking, the TPA method counts how many steps are needed to get from βmin to βmax.

Algorithm 2 One run of TPA. Output: a multiset B of values in the interval [βmin, βmax].
1: set β0 = βmin, let B be the empty multiset
2: for i = 1 to +∞ do
3: sample βi = TPAstep(βi−1)
4: if βi ∈ [βmin, βmax] then add βi to B, otherwise output B and terminate
5: end

The output of Algorithm 2 will be denoted as TPA(1), and the union of k independent runs of
TPA(1) as TPA(k). For a multiset B we define multiset z(B)

def
= {z(β) | β ∈ B} in a natural way.

6

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

(Recall that z(·) is a continuous strictly decreasing function). It is known (Huber and Schott, 2010,
2014) that z(TPA(k)) is a Poisson Point Process (PPP) on [z(βmax), z(βmin)] of rate k, starting from
z(βmin) and going downwards. In other words, the random variable z = z(TPA(k)) is generated by
the following process.

Algorithm 3 Equivalent process for generating z(TPA(k)).
1: set z0 = z(βmin), let z be the empty multiset
2: for i = 1 to +∞ do
3: draw η from the exponential distribution of rate k (and with the mean 1

k), set zi = zi−1 − η
4: if zi ∈ [z(βmax), z(βmin)] then add zi to z, otherwise output z and terminate
5: end

One way to use the TPA method is to simply count the number of points in TPA(k). Indeed,
|TPA(k)| is distributed according to the Poisson distribution with rate k ·(z(βmin)−z(βmax)) = k ·q,
so 1

k |TPA(k)| is an unbiased estimator of q. Unfortunately, obtaining a good estimate of q with this
approach requires a fairly large number of samples, namely O(q2) for a given accuracy and the
probability of failure (Huber and Schott, 2010, 2014). A better application of TPA was proposed
in (Huber, 2015), where the method was used for generating a schedule (β0, . . . , β`) as follows.

Algorithm 4 Generating a schedule (β0, . . . , β`). Input: integers k, d ≥ 1.
1: sample B ∼ TPA(k)
2: sort the values in B and then keep every dth successive value
3: add values βmin and βmax and output the resulting sequence (β0, . . . , β`) = (βmin, . . . , βmax)

Note that the resulting sequence (z1, . . . , z`−1)=(z(β1), . . . , z(β`−1)) can be described by a
process in Algorithm 3 where η is drawn as the sum of d exponential distributions each of rate k;
this is the gamma (Erlang) distribution with shape parameter d and rate parameter k.

Huber (2015) showed that if d = Θ(ln q + ln lnn) and k = Θ(d lnn) (with appropriate con-
stants) then Algorithm 4 produces a good schedule with high probability. Since q is unknown in
practice, Huber (2015) uses a two-stage procedure: first an estimate q̂ = 2 · |TPA(5)|

5 +1 is computed,
which is shown to be an upper bound on q with probability at least 0.99. This estimate is then used
for setting d and k.

In the next section we prove that the algorithm has desired guarantees for smaller parameter
values, namely d = Θ(1) and k = Θ(lnn). This allows to reduce the complexity of Algorithm 4
by a factor of Θ(ln q + ln lnn), and also eliminates the need for a two-stage procedure.

3. Our results

For technical reasons we will need to make the following assumption for line 2 of Algorithm 4:
if β1, β2, . . . is the sorted sequence of points in B then the index of the first point to be taken is
sampled uniformly from {1, . . . , d} (and after that the index is always incremented by d).

Denote m = k
d and zi = z(βi) for i ∈ [0, `]. We treat m and d as being fixed, and k = md as

their function. Also let δ = lnS[W] = ln S[V]. From (3) we get

δ =
∑
i

δi , δi = z(βi)− 2z
(
βi+βi+1

2

)
+ z(βi+1). (5)

7

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Since z(·) is convex, we have δi ≥ 0 for all i.

Case I: H(x) ∈ [1, n] for all x ∈ Ω First, let us assume that H(·) does not take value 0. In this
case the proofs become somewhat simpler, and we will get slightly smaller constants.

Huber showed that for d = Θ(ln(q lnn)) the schedule is well-balanced with probability Θ(1),
meaning that all intervals i satisfy zi − zi+1 ≤ τ · 1

m for a constant τ = 4
3 . (Note that E[zi −

zi+1] ≈ 1
m , ignoring boundary effects). It was then proved2 that a well-balanced schedule satisfies

δ ≤ τ
2 ·

lnn
m , leading to condition (4). We improve on this result as follows.

Choose a constant τ > 0 (to be specified later), and say that interval i is large if zi−zi+1 > τ · 1
m ,

and small otherwise. Let δ+ be the sum of δi over large intervals and δ− be the sum of δi over small
intervals (so that δ = δ+ + δ−). In Section A.1 we prove the following fact. (Recall that δ+, δ− are
deterministic functions of the schedule (β0, . . . , β`)).

Lemma 5 There holds δ− ≤ τ
2 ·

lnn
m and E[δ+] ≤ Γ(d+2,τd)

2d · d! · lnn
m for the schedule (β0, . . . , β`)

produced by Algorithm 4 with parameters k = md and d, where Γ(·, ·) is the upper incomplete
gamma function:

Γ(a, b) =

∫ +∞

b
ta−1e−tdt (with Γ(a, 0) = Γ(a) = (a− 1)!)

Using Markov’s inequality, we can now conclude that for any τ+ > 0 we have

P(δ+ ≥ τ+

2 ·
lnn
m) ≤ 1

τ+

2 ·
lnn
m

· E[δ+] ≤ Γ(d+ 2, τd)

τ+ · d · d!

Thus, with probability at least 1− Γ(d+2,τd)
τ+ · d · d!

Algorithm 4 produces a schedule satisfying δ ≤ τ+τ+

2 ·
lnn
m .

Recall that we want Algorithm 4 to succeed with probability at least ρ = 0.75
1−γ to make the

overall probability of success at least 0.75. (Here γ is the constant from Lemma 3). Let us define
function τρ(d) as follows:

τρ(d) = min
τ≥0,τ+>0

{
τ + τ+ | Γ(d+2,τd)

τ+ · d · d!
≤ 1− ρ

}
= min

τ≥0

[
τ + Γ(d+2,τd)

(1−ρ) · d · d!

]
The table below shows some values of this function for γ = 0.24 and ρ = 0.75

1−γ = 75
76 (computed

with the code of Bhattacharjee (1970)).

d 1 2 4 8 16 32 64 128 256 512
upper bound on τρ(d) 9.903 6.052 4.000 2.860 2.197 1.794 1.539 1.372 1.260 1.184

achieved with τ = 8.645 5.384 3.634 2.653 2.075 1.720 1.492 1.342 1.241 1.170

We can now formulate our main result for case I.

Theorem 6 Let Q̂ be the estimate given by Algorithm 1 (with parameter r) applied to the schedule
produced by Algorithm 4 (with parameters k = md and d). Suppose that

m ≥ τρ(d) · lnn
2 ln

(
1 + 1

2γrε̃
2
) for some γ ∈ (0, 0.25) and ρ = 0.75

1−γ (6)

2. More precisely, this is what the argument of Huber (2015) would give assuming that H(·) does not take value 0.

8

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

where ε̃ = 1 − (1 + ε)−1/2 = 1
2ε + O(ε2). Then Q̂ ∈ (Q

1+ε , Q(1 + ε)) with probability at least
0.75. The expected number of oracle calls that this algorithm makes is mq(r + d) + 2r + 1.

In particular, (6) will be satisfied for d = 64, m ≥ 3.6 · lnn and r =
⌈
2ε̃−2

⌉
= 8(1+o(1))ε−2.

Proof As we just showed,
P
(
δ ≤ τρ(d)

2 · lnn
m

)
≥ ρ (7)

Condition δ ≤ τρ(d)
2 ·

lnn
m implies condition δ ≤ ln

(
1 + 1

2γrε̃
2
)

(by (6)), which is in turn equivalent
to S[W] ≤ 1 + 1

2γrε̃
2. Thus, from Lemma 3 we get

P
(
Q̂ ∈ (Q

1+ε , Q(1 + ε)) | δ ≤ τρ(d)
2 · lnn

m

)
≥ 1− γ (8)

Multiplying (7) and (8) gives the first claim.
A PPP of rate k on an interval [z(βmax), z(βmin)] produces k[z(βmin)−z(βmax)] = mdq points

on average. Thus, Algorithm 4 makes mdq + 1 oracle calls on average and produces a sequence
(β0, . . . , β`) with E[`] = mq+ 1. Algorithm 1 then makes (`+ 1)r oracle calls, i.e. (mq+ 2)r calls
on average. This gives the second claim.

Case II: H(x) ∈ {0} ∪ [1, n] for all x ∈ Ω We now consider the general case. In Section A.2
we prove the following fact.

Lemma 7 For any constant λ ∈ (0, 1) there exists a decomposition δ = δ− + δ+ with δ−, δ+ ≥ 0
such that

δ− ≤ ln
1

1− λ
+
τ

2
·

2 + ln n
λ

m
E[δ+] ≤ Γ(d+ 2, τd)

2d · d!
·

2 + ln n
λ

m

As in the first case, we conclude from the Markov’s inequality that with probability at least 1 −
Γ(d+2,τd)
τ+ · d · d!

Algorithm 4 produces a schedule satisfying δ ≤ ln 1
1−λ + τ+τ+

2 · 2+ln n
λ

m . This leads to

Theorem 8 The conclusion of Theorem 6 holds if

m ≥
τρ(d) · (2 + ln n

λ)

2 ln
[(

1 + 1
2γrε̃

2
)

(1− λ)
] for some γ ∈ (0, 0.25), ρ = 0.75

1−γ and λ ∈ (0, 1) (9)

For example, (9) will be satisfied for d = 64,m ≥ 3.6·(9+lnn) and r =
⌈
2ε̃−2

⌉
= 8(1+o(1))ε−2

(where we used γ = 0.24 and λ = e−7).

3.1. Approximate sampling oracles

So far we assumed that exact sampling oracles µβ are used. For many applications, however, we
only have approximate sampling oracles µ̃β that are sufficiently close to µβ in terms of the variation
distance || · ||TV defined via

||µ̃β − µβ||TV = max
A⊆Ω
|µ̃β(A)− µβ(A)| = 1

2

∑
x∈Ω

|µ̃β(x)− µβ(x)|.

The analysis can be extended to approximate oracles using a standard trick (see e.g. (Štefankovič
et al., 2009, Remark 5.9)).

9

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Theorem 9 Let Q̂ be the output of the algorithm with parameters d,m, r satisfying the conditions
of Theorem 6 or 8 (depending on whether H(·) ∈ [1, n] or H(·) ∈ {0} ∪ [n]), where exact sam-
pling oracles µβ are replaced with approximate sampling oracles µ̃β satisfying ||µβ − µ̃β||TV ≤

κ
mq(r+d)+3r+1 . Then Q̂ ∈ (Q

1+ε , Q(1 + ε)) with probability at least 0.75− κ.

As mentioned in the introduction, probability 0.75 − κ can be boosted to any other probability
in (0.5, 1) by repeating the algorithm a constant number of times and taking the median (assuming
that κ is a constant in (0, 0.25)). Alternatively, one can tweak parameters in Theorems 6 and 8 to
get the desired probability directly.
Proof It is known that there exists a coupling between µβ and µ̃β such that they produce identical
samples with probability at least 1− ||µ̃β −µβ||TV ≥ 1− δ, where we denoted δ = κ

mq(r+d)+3r+1 .

Let A and Ã be the algorithms that use respectively exact and approximate samples, where the k-th
call to µβ in A is coupled with the k-th call to µ̃β̃ in Ã when β = β̃. We say that the k-th call is good
if the produced samples are identical. Note, P[k-th call is good | all previous calls were good] ≥
1 − δ, since the conditioning event implies β = β̃. Also, if all calls are good then A and Ã give
identical results.

Let N be the number of points inside [z(βmax), z(βmin)] produced by the call TPA(md) in
Algorithm 4. Then N follows the Poisson distribution of rate λ = mdq, i.e. P(N = n) = λne−λ

n! .
Algorithm 4 makesN+1 oracle calls, and produces a sequence (β0, . . . , β`) with ` ≤ N

d +2. Thus,
the total number of oracle calls is N + 1 + (` + 1)r ≤ Nc + 3r + 1 where c = 1 + r

d . Denoting
µ = λ(1− δ)c, we can write

P[all calls are good] ≥
∞∑
n=0

P(N = n) · (1−δ)nc+3r+1 =
∞∑
n=0

λne−λ

n!
· (1−δ)nc+3r+1

=
∞∑
n=0

µne−µ

n!
· eµ−λ(1−δ)3r+1 = eµ−λ(1−δ)3r+1 = e−λ(1−(1−δ)c)(1−δ)3r+1

≥ e−λ(1−(1−cδ))(1−δ)3r+1 ≥ (1−λcδ)(1−δ)3r+1 ≥ 1−λcδ−(3r+1)δ ≥ 1−κ

where we used the facts that (1 − x)c ≥ 1 − cx and e−x ≥ 1 − x for x ≥ 0 and c ≥ 1. Using the
union bound, we obtain the claim of the theorem.

3.2. Lower bound

In this section we establish a lower bound on the number of calls to the sampling oracles for esti-
mating q = ln Z(βmin)

Z(βmax) . First, we describe our model of computation and the set of instances that
we allow.

We assume that the estimation algorithm only receives values H(x) from the sampling oracle,
and not individual states x ∈ Ω. This means that an instance can be defined by counts ch = |{x ∈
Ω |H(x) = h}| for values h in the range of H; these counts uniquely specify the partition function
Z(β) =

∑
h che

−βh and the distribution of sampling oracle outputs for a given β. We will thus
view an instance as a triplet Γ = (c[Γ], βmin[Γ], βmax[Γ]) where c[Γ] : R→ Z≥0 is a function with
a finite non-empty support. When the instance is clear from the context, we will omit the square
brackets and write simply Γ = (c, βmin, βmax). For a value h ∈ supp(c) let ψ(β, h | Γ) be the

10

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

probability that the sampling oracle returns value h when queried at β in instance Γ:

ψ(β, h | Γ) = che
−βh/Z(β)

For a finite subsetH ⊆ R let I(H) be the set of instances Γ = (c, 0, βmax) satisfying supp(c) ⊆ H.
Also for a subset Q ⊆ R let I(H,Q) = {Γ ∈ I(H) | q∗(Γ) ∈ Q}, where we denoted q∗(Γ) =

ln Z(0)
Z(βmax) .
An estimation algorithm A applied to instance Γ = (c, 0, βmax) ∈ I(H) is assumed to have the

following form. At step i (for i = 1, 2, . . .) it does one of the following two actions:

1. Call the samping oracle for some value βi ∈ R. The oracle then returns a random variable
hi ∈ H with P(hi = h) = ψ(βi, h | Γ) for each h ∈ H.

2. Output some estimate q̂ and terminate.

The i-th action is a random variable that can depend only on the set supp(c), values βmin, βmax,
and on the previously observed sequence (β1, h1), . . . , (βi−1, hi−1). The output q̂ of the algorithm
will be denoted as qA(Γ), and the expected number of calls to the sampling oracle as TA(Γ).

We say that algorithm A is an (ε, δ)-estimator for instance Γ if P[|qA(Γ) − q∗(Γ)| > ε] < δ.
We can now formulate our main theorem.

Theorem 10 There exist positive numbers qmin, nmin, c1, c2, c3 such that the following holds for
all q ≥ qmin, n ≥ nmin with n ∈ Z, ε ∈ (0, c1q), δ ∈ (0, 1

4).

Denote m =
⌈
c2
√
q

n

⌉
andHmn = {h ∈ [1, n] : mh ∈ Z}. Suppose thatA is an (ε, δ)-estimator

for all instances in I(Hmn ,
[

2q
3 ,

4q
3

]
). Then there exists instance Γ ∈ I(Hmn ,

[
2q
3 ,

4q
3

]
) such that

TA(Γ) ≥ c3qε
−2 ln δ−1.

To prove this theorem, we construct three instances Γ,Γ+,Γ− such that |q∗(Γ±) − q∗(Γ)| > 2ε
and it is hard to differentiate between Γ and Γ± based on the outputs of sampling oracles. More
precisely, we require that ψ(β,h|Γ−)ψ(β,h|Γ+)

ψ(β,h|Γ)2
≥ γ for any β, h, where constant γ < 1 is sufficiently

close to 1. Instances Γ± have functions c±h = ch · e±hν for some constant ν > 0, where ch is
the function of Γ. The latter instance is defines so that its partition function has the form Z(β) =
e−β

∏N
k=1(ak + e−β/m) where N is some integer in [m(n − 1)] and a1, . . . , aN are exponentially

decreasing positive numbers. For further details we refer to Section A.3.

Acknowledgments

I thank Laszlo Erdös and Alexander Zimin for useful discussions. In particular, the link3 provided
by Alexander helped with the argument in Section A.1. The author is supported by the European Re-
search Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC
grant agreement no 616160.

3. http://math.stackexchange.com/questions/74454/paradox-of-a-poisson-process-on-mathbb-r

11

http://math.stackexchange.com/questions/74454/paradox-of-a-poisson-process-on-mathbb-r

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

References

I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda. Accelerating simulated annealing for
the permanent and combinatorial counting problems. SIAM J. Comput., 37:1429–1454, 2008.

G. P. Bhattacharjee. Algorithm AS 32: The incomplete gamma integral. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 19(3):285–287, 1970.

Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, editors. Handbook of Markov
chain Monte Carlo. Chapman & Hall/CRC, 2011.

M. Dyer and A. Frieze. Computing the volume of convex bodies: A case where randomness prov-
ably helps. In Proceedings of AMS Symposium on Probabilistic Combinatorics and Its Applica-
tions 44, pages 123–170, 1991.

J. A. Fill and M. L. Huber. Perfect simulation of Vervaat perpetuities. Electron. J. Probab., 15:
96–109, 2010.

G. S. Fishman. Choosing sample path length and number of sample paths when starting in the
steady state. Oper. Res. Lett., 16:209–219, 1994.

Heng Guo and Mark Jerrum. Random cluster dynamics for the Ising model is rapidly mixing. The
Annals of Applied Probability, 28(2):1292–1313, 2018.

Mark Huber. Perfect sampling using bounding chains. Annals of Applied Probability, 14(2):734–
753, 2004.

Mark Huber. Approximation algorithms for the normalizing constant of Gibbs distributions.
arXiv:1206.2689v1, June 2012.

Mark Huber. Approximation algorithms for the normalizing constant of Gibbs distributions. The
Annals of Applied Probability, 25(2):974–985, 2015.

Mark Huber and Sarah Schott. Using TPA for Bayesian inference. Bayesian Statistics 9, pages
257–282, 2010.

Mark Huber and Sarah Schott. Random construction of interpolating sets for high-dimensional
integration. arXiv:1112.3692, December 2011.

Mark Huber and Sarah Schott. Random construction of interpolating sets for high-dimensional
integration. J. Appl. Prob., 51:92–105, 2014.

M. Jerrum. A very simple algorithm for estimating the number of k-colourings of a low-degree
graph. Random Structures and Algorithms, 7:157–165, 1995.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the Ising model. SIAM
J. Comput., 22:1087–1116, 1993.

Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. COMPUT., 18(6):1149–
1178, December 1989.

12

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986.

J. F. C. Kingman. Poisson Processes. Clarendon Press, 1992.

James Matthews. Markov Chains for Sampling Matchings. PhD thesis, University of Edinburgh,
School of Informatics, 2008.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state
calculation by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.

James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and applications
to statistical mechanics. Random Structures and Algorithms, 9(1-2):223–252, 1996.

Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses. Phys.
Rev. Lett., 57(21):2607–2609, 1986.

J. P. Valleau and D. N. Card. Monte Carlo estimation of the free energy by multistage sampling. J.
Chem. Phys., 57:5457–5462, 1972.

E. Vigoda. Improved bounds for sampling colorings. In FOCS, pages 51–59, 1999.

D. Štefankovič, S. Vempala, and E. Vigoda. Adaptive simulated annealing: A near-optimal connec-
tion between sampling and counting. J. of the ACM, 56(3):1–36, 2009.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning, 1(1-2):1–305, December 2008.

13

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Appendix A. Proofs

A.1. Proof of Lemma 5

We will assume that the sequence (β0, . . . , β`) is strictly increasing (this holds with probabil-
ity 1). Accordingly, the sequence (z0, . . . , z`) is strictly decreasing. The following has been shown
in (Štefankovič et al., 2009; Huber, 2015).

Lemma 11 For any i ∈ [0, `− 1] there holds δi ≤ zi − zi+1 and also

−z′(βi)
−z′(βi+1)

≥ exp(2δi/(zi − zi+1))

Proof Denote β̄ = (βi + βi+1)/2 and z̄ = z(β̄), then δi = zi+1 − 2z̄ + zi. Since z(·) is a convex
strictly decreasing function, we have

−z′(βi) ≥
zi − z̄
β̄ − βi

− z′(βi+1) ≤ z̄ − zi+1

βi+1 − β̄

Since β̄ − βi = βi+1 − β̄, taking the ratio gives the second claim of the lemma:

−z′(βi)
−z′(βi+1)

≥ zi − z̄
z̄ − zi+1

=
1
2(zi − zi+1 + δi)
1
2(zi − zi+1 − δi)

=
1 + λ

1− λ
≥ e2λ

where we denoted λ = δi
zi−zi+1

≥ 0 and observed that λ < 1 since 1− λ = 2 z̄−zi+1

zi−zi+1
> 0. The fact

that λ < 1 also gives the first claim of the lemma.

Let us define s(β) = ln[−z′(β)] and si = ln[−z′(βi)] for i ∈ [0, `], then function s(·) and the
sequence (s0, . . . , s`) are strictly decreasing. Since z(β) and s(β) are continuous strictly decreasing
functions of β, we can uniquely express z via s and define a continuous strictly increasing function
z(s) on the interval S def

= [s`, s0] (Fig. 1(b)). Note, with some abuse of notation we use z(·) for two
different functions: one of argument β, and another one of argument s. The exact meaning should
always be clear from the context.

The inequality in the last lemma for an interval i ∈ [0, `− 1] can be rewritten as follows:

2δi ≤ (zi − zi+1) · (si − si+1) (10)

Equivalently, we have 2δi ≤ Area(∆i) where ∆i ⊆ [s`, s0] × [z`, z0] is the rectangle with the top
right corner at (si, zi) and the bottom left corner at (si+1, zi+1) (Fig. 1(b)). Let ∆+ be the union of
rectangles ∆i corresponding to large intervals i (with |zi − zi+1| > τ · 1

m), and ∆− be the union of
∆i corresponding to small intervals i. Then 2δ+ ≤ Area(∆+) and 2δ− ≤ Area(∆−).

By geometric considerations it should be clear that

Area(∆−) ≤ max {|zi − zi+1| : i is small} · |S| ≤ τ · 1
m · |S|

Observe that−z′(β) = EX∼µβ [H(X)] ∈ [1, n] for any β, and therefore S = [s`, s0] ⊆ [0, lnn] and
so |S| ≤ lnn. This establishes the first claim of Lemma 5. Next, we focus on proving the second
claim.

For a point s ∈ S let ηs be the length of the interval (zi+1, zi) into which z(s) falls (or 0,
if z(s) ∈ {z`, . . . , z0}). Also let η+

s = ψ[ηs] where ψ[·] is the following function: ψ[a] = a if

14

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

βmaxβmin

z0

z1

z2

z3
β

z(β)

s0s1s2s3

z0

z1

z2

z3
s(β)

z(β)

−

+

+

s

η+s

(a) (b) (c)

Figure 1: (a) z(β) = lnZ(β) is a strictly convex decreasing function. Four dots show a possible
output of Algorithm 4. Here ` = 3 and [β0, β`] = [βmin, βmax]. (b) Definitions of the
sets ∆i (in gray). Intervals 0 and 1 are assumed to be large, while interval 2 is small. (c)
Definition of the variable η+

s (in the case of a large interval).

a > τ · 1
m , and ψ[a] = 0 otherwise. Thus, if z(s) ∈ (zi+1, zi) for some large interval i then

η+
s = zi − zi+1 (Fig. 1(c)), otherwise η+

s = 0. We have

Area(∆+) =

∫
S
η+
s ds

The linearity of expectation gives

2E[δ+] ≤ E(Area(∆+)) =

∫
S
E[η+

s]ds ≤ max
s∈S

E[η+
s] · |S| (11)

Now let X0, X1, X2, . . . be a Poisson process on [0,+∞) and X−1, X−2, . . . be a Poisson pro-
cess on (−∞, 0] (both with rate k). Thus,Xi = ξ0+. . .+ξi for i ≥ 0 andXi = −ξ−1−ξ−2−. . .−ξi
for i ≤ −1, where ξj are i.i.d. variables from the exponential distribution of rate k. By the
superposition theorem for Poisson processes (Kingman, 1992, page 16), bidirectional sequence
X = . . . , X−2, X−1, X0, X1, X2, . . . is a Poisson process on (−∞,+∞) (again with rate k), and
in particular it is translation-invariant.

Let Y = . . . , Y−2, Y−1, Y0, Y1, Y2, . . . be the following process: draw an integer c ∈ {0, . . . , d− 1}
uniformly at random and then set Yi = Xdi+c for each i. It can be seen that Y models the output
(β0, . . . , β`) of Algorithm 4 as follows: take the sequence z(βmin) − Y0, z(βmin) − Y1, z(βmin) −
Y2, . . ., restrict to [z(βmax), z(βmin)] and append z(βmin) and z(βmax). Then the resulting sequence
has the same distribution as (z(β0), . . . , z(β`)). We assume below that (β0, . . . , β`) is generated by
this procedure.

For a point a ∈ R let θa be the length of the interval (Yi, Yi+1) into which a falls (or 0, if no such
interval exists). Note, the distribution of random variable θa does not depend on a (since process Y
is translation-invariant). We also denote θ+

a = ψ[θa], and let θ and θ+ = ψ[θ] be random variables
with the same distributions as θa and θ+

a , respectively (for any fixed a). Clearly, for each s ∈ [s`, s0]
we have ηs ≤ θa and η+

s ≤ θ+
a for a suitably chosen a, namely, a = z(βmin) − z(s). (Note, if

z(s) ∈ (z`−1, z1) then ηs = θa and η+
s = θ+

a , but at the boundaries the inequalities may be strict).
We thus have

E[η+
s] ≤ E[θ+] (12)

15

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Lemma 12 Variable θ has the gamma (Erlang) distribution with shape parameter d + 1 and rate
k, whose probability density is f(t) = kd+1tde−kt/d! for t ≥ 0.

Proof We prove this fact for variable θa with a = 0. We know that Y−1 = Xc−d ≤ 0 and
Y0 = Xc ≥ 0, so θ0 = Y0 − Y−1 (with probability 1). By construction, Xc − Xc−d = ξc−d +
ξc−d+1 + . . .+ ξc, i.e. θ0 is a sum of d+ 1 i.i.d. exponential random variables each of rate k. This
implies the claim.

Recall that θ+ = θ if θ > τ/m, and θ+ = 0 otherwise. Lemma 12 now gives

E[θ+] =

+∞∫
τ/m

tf(t)dt =

+∞∫
τ/m

kd+1td+1e−kt

d!
dt =

+∞∫
τd/k

(kt)d+1e−(kt)

k · d!
d(kt)

=
1

k · d!

+∞∫
τd

ud+1 e−udu =
Γ(d+ 2, τd)

k · d!
=

Γ(d+ 2, τd)

md · d!

Combining this with (11) and (12) and observing again that |S| ≤ lnn finally gives the second
claim of Lemma 5.

A.2. Proof of Lemma 7

We will use the same notation as in the previous section. Since H(·) can now take value 0, we have
−z′(β) = EX∼µβ [H(X)] ∈ [0, n] and so [s`, s0] ⊆ [−∞, lnn] (instead of [s`, s0] ⊆ [0, lnn], as in
the previous section). We will deal with small values of s(β) exactly as in (Huber, 2015).

Recall that z′(β) is a strictly increasing function of β. Let β̂ be the unique value with z′(β̂) =
−λ. (If it does not exist, then we take β̂ ∈ {−∞,+∞} using the natural rule). Denote ẑ = z(β̂)
and ŝ = ln[−z′(β̂)]. Now introduce the following terminology for an interval i ∈ [0, `− 1]:

• interval i is steep if βi+1 ≤ β̂, or equivalently si+1 ≥ ŝ;

• interval i is flat if βi ≥ β̂, or equivalently si ≤ ŝ;

• interval i is crossing if β̂ ∈ (βi, βi+1), or equivalently ŝ ∈ (si+1, si).

If steep intervals exist then β̂ ≥ βmin and z′(β̂) ≤ −λ. (The inequality may be strict if β̂ = +∞).
We thus have [si+1, si] ⊆ [ŝ, s0] ⊆ [lnλ, lnn] for all steep intervals i. The argument from the
previous section gives that

∑
i: i is steep and small

δi ≤
τ

2
·

ln n
λ

m
E

 ∑
i: i is steep and large

δi

 ≤ Γ(d+ 2, τd)

2d · d!
·

ln n
λ

m

(We just need to assume that βmax was replaced with min{βmax, β̂}, then we would have S =
[s`, s0] ⊆ [lnλ, lnn] and |S| ≤ ln n

λ instead of |S| ≤ lnn, the rest is the same as in the previous
section).

Let us now consider flat intervals. The argument from Huber (2015) gives the following fact.

Lemma 13 The sum of δi over flat intervals i is at most ln 1
1−λ .

16

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Proof Assume that flat intervals exist, then β̂ ≤ βmax and z′(β̂) ≥ −λ. (The inequality may be
strict if β̂ = −∞). Denote Ω0 = {x ∈ Ω | H(x) = 0} and Ω+ = {x ∈ Ω | H(x) ≥ 1}, then
Ω = Ω0 ∪ Ω+ and

EX∼µβ̂ [H(X)] =

∑
x∈Ω+

H(x)e−β̂H(x)

Z(β̂)
≥
∑

x∈Ω+
e−β̂H(x)

Z(β̂)
= 1−

∑
x∈Ω0

e−β̂H(x)

Z(β̂)
≥ 1−Z(βmax)

Z(β̂)

On the other hand, EX∼µβ̂ [H(X)] = −z′(β̂) ≤ λ and so Z(βmax)

Z(β̂)
≥ 1− λ and z(β̂)− z(βmax) ≤

ln 1
1−λ . For all flat intervals i we have [zi+1, zi] ⊆ [z(βmax), z(β̂)] and also δi ≤ zi − zi+1. This

gives the claim of the lemma.

It remains to consider crossing intervals. Let us define values δ−c and δ+
c as follows. If there

are no crossing intervals then δ−c = δ+
c = 0. Otherwise let i be the unique crossing interval; if i

is small then set (δ−c , δ
+
c) = (δi, 0), and if i is large then set (δ−c , δ

+
c) = (0, δi). In all cases we

have δ−c ≤ τ
m (since δi ≤ zi − zi+1). Also, E[δ+

c] ≤ E[ψ(zi − zi+1)] ≤ E[θ+] ≤ Γ(d+2,τd)
md · d! where

function ψ(·) and random variable θ+ were defined in the previous section.
We can finally prove Lemma 7. Define δ− as δ−c plus the sum of δi over small steep intervals i

and flat intervals i. Define δ+ as δ+
c plus the sum of δi over large steep intervals i. By collecting

inequalities above we obtain the desired claim.

A.3. Proof of Theorem 10

The proof will be based on the following result. For brevity, we use notation a ± b to denote the
closed interval [a− b, a+ b].

Lemma 14 Suppose that A is an (ε, δ)-estimator for instances Γ ∈ I(H, {q}) and Γ1, . . . ,Γd ∈
I(H,R \ (q ± 2ε)), where βmax[Γi] = βmax[Γ] and supp(c[Γi]) = supp(c[Γ]) for i ∈ [d]. Suppose
that ∏

i∈[d]

ψ(β, h | Γi)
ψ(β, h | Γ)

≥ γ ∀β ∈ R, h ∈ supp(c[Γ]) (13)

for some constant γ ∈ (0, 1). Then TA(Γ) ≥ (1−δ′−δ)d ln(δ′/δ)
ln(1/γ) for any constant δ′ ∈ [δ, 1− δ].

Proof The run of the algorithm can be described by a random variableX = ((β1, h1), . . . , (βt, ht), q̂),
where t is the number of oracle calls (possibly infinite, in which case q̂ is undefined). Let X be the
set all possible runs, and PA(· | Γ̃) be the probability measure of this random variable conditioned
on Γ̃ being the input instance. The structure of the algorithm implies that this measure can be
decomposed as follows:

dPA(x | Γ̃) = ψ(x | Γ̃) dµA(x) ∀x ∈ {((β1, h1), . . . , (βt, ht), q̂) ∈ X | t is finite} (14)

where µA(·) is some measure on X that depends only on the algorithm A, and function ψ(·) is
defined via

ψ((β1, h1), . . . , (βt, ht), q̂ | Γ̃) =
∏
i∈[t]

ψ(βi, hi | Γ̃)

17

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

Denote τ = d ln(δ′/δ)
ln(1/γ) , and define the following subsets of X :

X ∗ = {((β1, h1), . . . , (βt, ht), q̂) ∈ X | t ≤ τ and q̂ ∈ q ± ε }
X ′ = {((β1, h1), . . . , (βt, ht), q̂) ∈ X | t > τ }
X ′′ = {((β1, h1), . . . , (βt, ht), q̂) ∈ X | t ≤ τ and q̂ /∈ q ± ε }

Suppose the claim of Lemma 14 is false, i.e. TA(Γ) ≤ (1 − δ′ − δ) · τ . We have TA(Γ) ≥
PA(X ′ | Γ) · τ , and therefore

PA(X ′ | Γ) ≤ 1− δ − δ′ (15)

Since A is a (ε, δ)-estimator for instances Γ,Γ1, . . . ,Γd, we have

PA(X ′′ | Γ) < δ (16)

PA(X ∗ | Γi) < δ ∀i ∈ [d] (17)

Set X is a disjoint union of X ∗,X ′,X ′′, therefore PA(X ∗ | Γ) = 1− PA(X ′ | Γ)− PA(X ′′ | Γ) >
1− (1− δ − δ′)− δ = δ′. Combining this with (17) gives

1

d

∑
i∈[d]

PA(X ∗ | Γi) <
δ

δ′
PA(X ∗ | Γ) (18)

Assumption (13) of the lemma gives that∏
i∈[d]

ψ(x | Γi)
ψ(x | Γ)

≥ γt ≥ γτ ∀x = ((β1, h1), . . . , (βt, ht), q̂) ∈ X ∗ (19)

We can now write

1

d

∑
i∈[d]

ψ(x | Γi) ≥

∏
i∈[d]

ψ(x | Γi)

1/d

≥ γτ/dψ(x | Γ) =
δ

δ′
ψ(x | Γ) ∀x ∈ X ∗ (20)

where the first inequality is a relation between arithmetic and geometric means of non-negative
numbers, and the second inequality follows from (19). We can write

1

d

∑
i∈[d]

PA(X ∗ |Γi)
(a)
=

1

d

∑
i∈[d]

∫
X ∗
ψ(x |Γi)dµA(x)

(b)

≥ δ

δ′

∫
X ∗
ψ(x |Γ)dµA(x)

(c)
=

δ

δ′
PA(X ∗ |Γ)

where (a,c) follow from (14) and (b) follows from (20). We obtained a contradiction to (18).

Recall that by definition coefficients of instances should be non-negative integers. When using
Lemma 14, we can relax this requirement to non-negative rationals (since multiplying coefficients
by a constant does not affect quantities in Lemma 14) and further to non-negative reals (since they
can be approximated by rationals with an arbitrary precision).

18

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

We will use Lemma 14 with d = 2 and three instances Γ,Γ+,Γ−. First, we will describe the
construction of Γ+ and Γ− given an instance Γ. After stating some properties of this construction,
we will define the instance Γ.
Instances Γ+ and Γ− Suppose that Γ = (c, 0, βmax) ∈ I(H). We set Γ+ = (c+, 0, βmax) and
Γ− = (c−, 0, βmax) where functions c+, c− are given by

c+
h = ch · ehν , c−h = ch · e−hν ∀h ∈ R

where ν > 0 is some constant. Let Z(·), Z+(·), Z−(·) be the partition functions corresponding to
Γ, Γ+, Γ−, respectively. One can check that

Z(β) =
∑

h∈supp(c)

che
−βh Z+(β) = Z(β − ν) Z−(β) = Z(β + ν)

Denote z(β) = lnZ(β) and zdiff(β) = z(β)− z(βmax + β). Then

q = q∗[Γ] = zdiff(0) q∗[Γ+] = zdiff(−ν) q∗[Γ−] = zdiff(ν)

Condition Γ+,Γ− ∈ I(H,R \ (q ± 2ε)) can thus be written as follows:

|zdiff(±ν)− zdiff(0)| > 2ε (21)

Condition (13) after cancellations becomes

Z2(β)

Z(β − ν)Z(β + ν)
≥ γ ∀β ∈ R

or equivalently

z(β − ν)− 2z(β) + z(β + ν) ≤ ln
1

γ
∀β ∈ R (22)

Let us define the following quantities; note that they depend only on instance Γ:

ρ = |z′diff(0)| κ = sup
β∈R

z′′(β) (23)

Lemma 15 Let Γ be an instance with values q = q∗(Γ), ρ, κ as described above. Fix ε ∈ (0, ρ
2

10κ).
Suppose that algorithm A is an (ε, δ)-estimator for all instances in I(H, q ± 4ε). Then for any
constant δ′ ∈ [δ, 1− δ] we have

TA(Γ) ≥ 2(1− δ′ − δ)ρ2 ln(δ′/δ)

9κε2

Proof Non-negativity of function c implies that function z(·) is convex, and so z′′(β) ∈ [0, κ] for
all β ∈ R. Define ν = 3ε/ρ. For β = ±ν we can write

|zdiff(β)− zdiff(0)| (a)
=

∣∣∣∣z′diff(0)β + z′′diff(β̃)
β2

2

∣∣∣∣ (b)
∈ [|ρβ| − κβ2, |ρβ|+ κβ2]

19

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

where in (a) we used Taylor’s theorem with the Lagrange form of the remainder (here β̃ ∈ R), and
in (b) we used the fact that |z′′diff(β̃)| = |z′′(β̃) − z′′(βmax + β̃)| ≤ 2κ. Observing that |ρβ| = 3ε
and κβ2 = ε · 9κε

ρ2
< ε, we get |zdiff(β) − zdiff(0)| ∈ (2ε, 4ε). Thus, condition (21) holds, and

Γ+,Γ− ∈ I(H, q ± 4ε).
Denote f(β) = z(β)− z(β − ν). Using twice the mean value theorem, we get

z(β−ν)−2z(β)+z(β+ν) = f(β+ν)−f(β) = f ′(β̃)ν = [z′(β̃)−z′(β̃−ν)]ν = z′′(
˜̃
β)ν2 ≤ κν2

where β̃, ˜̃
β ∈ R. Thus, condition (22) will be satisfied if we set γ ∈ (0, 1) so that ln 1

γ = κν2 =
9κε2

ρ2
. Lemma 15 now follows from Lemma 14.

Instance Γ We now need to construct instance Γ such that q = q∗[Γ] is close to a given value q̄,
and the ratio ρ2

κ is large. We will use an instance with the following partition function:

Z(β) = e−β
N∏
k=1

(ak + e−β/m) (24)

where N is some integer in [m(n−1)] and a1, . . . , aN are non-negative numbers. Expanding terms
yields Z(β) =

∑
h∈Hmn che

−βh for some coefficients ch ≥ 0, so this is indeed a valid definition of
an instance Γ ∈ I(Hmn). In Section A.4 we prove the following fact.

Lemma 16 There exist values a1, . . . , aN , βmax > 0 such that q = ln 2
2 N2 ± O(mN) and ρ2

κ >
(N4 − 1)2.

This will imply Theorem 10. Indeed, let q̄ be the value chosen in Theorem 10. Set N̂ =
√

2
ln 2 q̄

and N =
⌈
N̂
⌉

. Note that

N̂

m(n− 1)
≤

√
2

ln 2 q̄

c2
√
q̄

n (n− 1)
= const · n

n− 1
with const =

√
2

ln 2 / c2

Thus, setting c2 >
√

2
ln 2 will ensure that N ∈ [m(n− 1)] for sufficiently large n.

We have q = ln 2
2 N2±O(mN) = ln 2

2 N̂2±O(mN̂) = q̄±O(m
√
q̄) = q̄

(
1±O

(
m√
q̄

))
. Re-

calling that m =
⌈
c2
√
q

n

⌉
, we conclude that q ∈

[
3q̄
4 ,

5q̄
4

]
if q̄, n are sufficiently large. Furthermore,

we have ρ2

κ > (N4 − 1)2 > 1
6 q̄ if q̄ is sufficiently large (note that 1

6 <
1

8 ln 2).
We set c1 = 1

60 , so that ε ∈ (0, 1
60 q̄). Now suppose that the preconditions of Theorem 10 hold.

It can be checked that ε ∈ (0, ρ
2

10κ) and q ± 4ε ⊆
[

2q̄
3 ,

4q̄
3

]
, so the preconditions of Lemma 15 hold

as well. Setting δ′ = 1
2 and recalling that δ ∈ (0, 1

4), we obtain the desired result:

TA(Γ) ≥
2(1− 1

2 − δ) ln(1
2/δ)

9ε2
· ρ

2

κ
≥ ln δ−1 − ln 2

18ε2
· q̄

6
≥

1− ln 2
ln 4

18 · 6
· q̄ ln δ−1

ε2

20

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

A.4. Proof of Lemma 16

Denote u = u(β) = e−β/m and η = u(βmax) = e−βmax/m. (The choice of η ∈ (0, 1) will be
specified later). We can write

z(β) = −β +

N∑
k=1

ln(ak + u) z′(β) = −
N∑

k=N

u

m(ak + u)
z′′(β) =

N∑
k=1

aku

m2(ak + u)2
(25)

q = z(0)− z(βmax) = m ln
1

η
+

N∑
k=1

ln
ak + 1

ak + η
(26)

ρ = |z′(0)− z′(βmax)| =
1

m

N∑
k=1

[
1

ak + 1
− η

ak + η

]
(27)

As for κ = maxβ∈R z
′′(β), we will use the following bound.

Lemma 17 Suppose that a1 ≥ a2 ≥ . . . ≥ aN > 0. Then κ ≤ maxr∈[N−1] κr where we denoted

κr =
1

m2

[
r∑

k=1

ar
ak

+
N∑

k=r+1

ak
ar+1

]

Proof We need to show that

N∑
k=1

aku

m2(ak + u)2
≤ max

r∈[N−1]
κr ∀u ∈ (0,+∞)

By taking the derivative one can check that function gk(u) = aku
(ak+u)2

is increasing on [0, ak] and

decreasing on [ak,+∞) (with the maximum at u = ak). Therefore, function g(u) =
∑N

k=1 gk(u)
attains a maximum at [aN , a1]. We can thus assume w.l.o.g. that u ∈ [aN , a1].

Let r ∈ [N − 1] be an index such that u ∈ [ar+1, ar]. For k ∈ [1, r] we have gk(u) ≤ gk(ar) =
ar/ak

(1+ar/ak)2
≤ ar

ak
, and for k ∈ [r + 1, N] we have gk(u) ≤ gk(ar+1) = ak/ar+1

(1+ak/ar+1)2
≤ ak

ar+1
. By

summing these inequalities we get that g(u) ≤ m2κr.

We can now prove Lemma 16. Define ak = 21−k and η = 21−N . For each k ∈ [N] we have
ln ak+1

ak+η ≥ ln 1
2ak

= (k − 2) ln 2 and ln ak+1
ak+η < ln ak+1

ak
= ln 1

ak
+ ln(1 + ak) ≤ ln 1

ak
+ ak =

(k − 1) ln 2 + 21−k, therefore

q > m(N − 1) ln 2 +
N∑
k=1

(k − 2) ln 2 =

(
m+

N

2

)
(N − 1) ln 2−N ln 2

q < m(N − 1) ln 2 +

N∑
k=1

[
(k − 1) ln 2 + 21−k

]
<

(
m+

N

2

)
(N − 1) ln 2 + 2

21

A FASTER APPROXIMATION ALGORITHM FOR THE GIBBS PARTITION FUNCTION

The following inequalities imply the last two claims of Lemma 16:

ρ >
1

m

N∑
k=1

[
1

1 + 1
− η

ak

]
=

1

m

[
N

2
− 2N − 1

2N−1

]
>

1

m

[
N

2
− 2

]

κr <
1

m2

[
r∑

k=1

ar
ak

+

+∞∑
k=r+1

ak
ar+1

]
=

1

m2

[
2r − 1

2r−1
+ 2

]
<

4

m2
∀r ∈ [N − 1]

22

	Introduction
	Background and preliminaries
	Paired product estimator
	TPA method

	Our results
	Approximate sampling oracles
	Lower bound

	Proofs
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Theorem 10
	Proof of Lemma 16

