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Abstract

We describe a new implementation of the Edmonds’s algorfiimeomputing a perfect matching of minimum
cost, to which we refer aBlossom V. A key feature of our implementation is a combination of tweas that were
shown to be effective for this problem: the “variable duatiafes” approach of Cook and Rohe [8] and the use of
priority queues. We achieve this by maintaining an auxiligmraph whose nodes correspond to alternating trees in
the Edmonds’s algorithm. While our use of priority queuessinot improve the worst-case complexity, it appears
to lead to an efficient technique. In the majority of our t&itsssom V outperformed previous implementations of
Cook and Rohe [8] and of Mehlhorn and Schafer [24], sometibhean order of magnitude. We also show that for
large VLSI instances it is beneficial to update duals by sgi\a linear program, contrary to a conjecture by Cook
and Rohe.

1 Introduction

We consider the problem of computing a perfect matching afimiim cost in an undirected weighted graph. (A
perfect matching is a subset of edges such that each node in the graph is meabtiyesne edge in the subset.)

In 1965, Edmonds [11, 12] invented the famdaligssom algorithm that solves this problem in polynomial time. A
straightforward implementation of Edmonds’s algorithmuigesO (n?m) time, wheren is the number of nodes in the
graph andn is the number of edges. Since then, the worst-case comptEhttie blossom algorithm has been steadily
improving. Both Lawler [22] and Gabow [16] achieved a rurmhiime of O(n?), Galil, Micali and Gabow [28]
improved it toO(nm log n), which was further improved t@(n(m log 1og10g,,,axm/n,2y 7 + nlogn)) by Gabow,
Galil and Spencer [18]. The current best known result in geofi. andm is O(n(m + logn)) due to Gabow [17].
Somewhat better asymptotic running times are known fogialeedge weights (see e.g. [8] for a survey).

There is also a long history of computer implementationsheflilossom algorithm, starting with tigossom |
code of Edmonds, Johnson and Lockhart [13]. For severaby#aeBlossom |V code of Cook and Rohe [8] was
considered as the fastest available implementation of ltesbm algorithm (see [5, 8] for comparisons with earlier
codes). The main feature of Blossom IV was a particularegrator updating dual variables called thegiable dual
updates (or thevariable §) approach [8].

Blossom IV and earlier codes used rather simple data stes;tin particular, they did not exploit priority queues
for finding an edge with the smallest slack. A natural questiowhether priority queues can improve a practical
implementation, given that they are heavily used for imprguwhe worst-case complexity. An affirmative answer
was given by Mehlhorn and Schéafer [24] who developed anémgihtation that runs i®(nmlogn) and showed
an improvement over the Blossom IV code. The implementaifdi24] follows the algorithm of Galil, Micali and
Gabow [28], and usesoncatenable priority queues. This algorithm uses a fixedl approach, which is essential for
achieving theD(nm log n) bound.

In this paper we describe a new implementation of Edmondgtrighm to which we refer ag8lossom V. Our
motivation was to incorporate both the variablapproach and the use of priority queues, which were showbd to
effective in practice in [8] and in [24], respectively. A kégature of our implementation is the maintenance of an
auxiliary graph whose nodes correspond to alternating tie¢he Edmonds’s algorithm. The edges of this graph
store pointers to the corresponding priority queues. Oaraiipriority queues does not improve over the worst-case
complexity of Blossom IV (which we believe to li&(n>m)), but it appears to be quite effective in practice.

The rest of the paper is organized as follows. In section 2 iwe an overview of the blossom algorithm and the
variabled approach. In section 3 we describe details of our implentiemtaComputational results are presented in
section 4. Finally, section 5 presents conclusions andidsss future work.
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2 Background: Edmonds's blossom algorithm

Let G = (V, E, ¢) be an undirected weighted graph.matching is a subset of edge8’ C F such that each node
in V has at most one incident edgeAti. MatchingE’ is perfect if each node in” has exactly one incident edge in
E’. The goal is it compute a perfect matchifg of minimum costc(E’). (As usual, ifA is a subset oB andz is a
vector in B¥, thenz(A) denotesy",_ , z;.) We assume that a perfect matchingdrexists. MatchingsZ” C E will

be represented by incidence vectors {0, 1}%.

LP formulation The blossom algorithm is based on the following linear pangming formulation of the minimum
cost perfect matching problem. For a subSet V, letd(S) be the set of boundary edges$fi.e.d(S) = {(u,v) €
E|ue S,veV -5} Forasingle node € V we denotej(v) = §({v}). Let O be the set of all subsets &f of
odd cardinality containing at least three nodes. EdmonHE'sslthen given by

PRIMAL DUAL
min - Y g Cee (1a) max oy Y+ D gco¥s (2a)
subjectto z(d(v)) =1 YoeV (1b) subjectto sl ack(e) >0 Vee FE (2b)
x(6(5)) > 1 VSeo (1c) ys >0 VSeo (2¢c)
Te >0 Vee E (1d)

wheres| ack(e) in eq. (2b) denotes the reduced cost of edge (u, v):

slack(e) = ce — yu — Yo — Z Ys
S€0: ees(S)

Edgese with zero slack are calletiight.

Edmond’s algorithm maintains a feasible dual vegt@nd a (non-feasible) integer-valued primal vectarhich
corresponds to a matching. These vectors are updated dbéterdinality of matching increases gradually until
becomes a perfect matching. At this point the complemesfagkness conditions are satisfied:

slack(e) >0 = z.=0 (3a)
ys >0 = z(6(9)) =1 (3b)

and thuse gives a perfect matching of minimum cost.

One potential concern is that the dual problem has an expi@haaomber of variablegg, S € O. However, this
does not cause problems since at any moment there are abfiossubsetsS € O with non-zero variablgs. These
subsets are calldaossoms.

A blossom can be defined recursively as follows: it is a cyoletaining arodd number of “pseudonodes”, where
a pseudonode is either a nodelinor another blossom. Two consecutive pseudonodes in the ayelconnected via
an edge called blossom-forming edge. Examples of blossoms are shown in Fig. 1(a). If a pseudoisocoEntained in
some blossom it is calleidterior, otherwise it isexterior.

The algorithm treats blossoms as ordinary nodes. This silpledue to the following key property: if we managed
to match an edge coming out of one of the nodes inside thedtgsthen we can recursively match the remaining
even number of nodes to each other using only blossom-fgremilges (see Fig. 1(b)). Blossom-forming edges are
always tight, which ensures property (3a). Note, chandieglual variabley, for blossomv (or changing other dual
variables outside the blossom) does not affect the slackdgds inside the blossom.

It should be said that there is one important difference betwa blossom and an ordinary node € V': variable
1, Must be non-negative, whilg, can take any sign. Because of this blossoms sometimes hdedrpanded to
preventy, from becoming negative.

2.1 Overview of the algorithm

The algorithm works only with exterior pseudonodes; pseodes and edges inside blossoms are not considered
(unless the blossom is expanded). From now on, we will refexterior pseudonodes as just “nodes”, unless stated
otherwise.

Each node has a label(v) € {+, —, @}. Nodesv with labeli(v) = @ are calledree nodes; they are always
matched to another free node via a tight edgéf # @, thenv belongs to alternating tree (Fig. 1(c)). Ifi(v) = —
then the parent af is a “+” node, to whichv is connected via a tight unmatched eddee. 2. = 0). If [(v) = + then
the parent ob is a “—" node, to whichv is connected via a tight matched edgg:. = 1). The only exception is the
root of the tree, which has the label” but is unmatched. Note " nodes may have several children (or none), but
a “—" node always has one child. Clearly, the number of treesledna number of unmatched nodes in the graph.

The algorithm iterates between “primal updates” ar}d “dyglates”, which are described below.
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Figure 1: Basic notions. Solid lines show blossom forming edges or edgesin a tree. Double solid lines show
edgesin the current matching. Other edges of the graph are not shown. (a) Two valid blossoms. (b) Canonical
matchings obtained after nodenside the blossom is matched to an exterior node. (c) A ptesgitermediate state
of the algorithm. There are two alternating trees (their ataied roots are at the top) and two free nodes.

(c) SHRINK (d) EXPAND

Figure 2:Four possible operations performed during the primal updates. Dashed lines denote tight edges which
are not in any tree. In (c) the shrunk blossom becomes theofdbt tree, since the original root is subsumed. The
EXPAND operation for blossom is allowed only if/(v) = — andy, = 0.

2.2 Primal updates

During primal updates the algorithm attempts to find a maighi of higher cardinality that uses only tight edges.
(Dual variablegy are kept constant.) Four operations are used:

e GROW: If edge(u,v) is tight, l(u) = + andl(v) = @ then the tree to whicl belongs can be “grown” by
acquiring node: and the corresponding matched node (Fig. 2(a)).

e AUGMENT: If edge (u,v) is tight, I(u) = I(v) = + andu, v belong to different trees then the cardinality of
matchingz can be increased by “flipping” variabie for edges: along the path connecting the roots of the two
trees (Fig. 2(b)). All nodes in the trees become free.

e SHRINK: If edge(u, v) is tight, I(u) = I(v) = + andu, v belong to the same tree then there is cycle of odd
length that can be shrunk to a blossom (Fig. 2(c)). The du@&bie for this new blossom is set to

e EXPAND: If nodew is a blossom withy,, = 0 andl%v) = — then it can be expanded (Fig. 2(d)).



Note, AUGMENT is the only operation that changes the curmeatchingz. The cardinality of the matching is
increased by 1, so there are at mog2 augmentations. Arguably, it is the most desirable opemaind should have
a priority over other operations.

2.3 Dual updates

These updates modify dual variablg$or nodes in the trees while keeping trees and blossomstinfac each tree

T we choose the amount of dual charige> 0. For nodev € T the dual variabley, is then updated as follows: if
l(v) = — then set, := y, — o7, and if/(v) = + then sety, := y, + 7. The value of the dual objective function is
increased by . 7. Vectory must remain a feasible dual, which gives the following cuaists on{ér }:

or < slack(u,v) (u,v)isa(+,o)edge,u € T (4a)
dor + 9 < slack(u,v) (u,v)isa(+,+)edge,u € T,o € T, T # T’ (4b)
or < slack(u,v)/2 (u,v)is a(+,+) edge,u,v € T (4c)
or < Yo v is a “=" node which is a blossom € T (4d)
or — o < slack(u,v) u,v)isa(+,—)edge,u € T,o € T, T # T’ (4e)

Suppose that the change for treeT is set to the maximal value so that one of the constraints)ibgdomes tight. If
such constraint is (4a), then after the dual changé-the) edge(u, v) becomes tight, so the GROW operation can be
applied. Similarly, if constraints (4b),(4c),(4d) arehtighen the operations AUGMENT, SHRINK, EXPAND can be
performed, respectively. The only case when no immediatgrpess can be made on tr€as whendr is determined
by the last constraint (4e).

Let us now discuss specific strategies for choosing va{deg. Techniques proposed in the literature can be
classified as follows:

1. A single tree approach. All primal and dual operationsagglied to the current treég until it is augmented.
All other trees consist only of single root nodes (labelet-e§. Note, case (4e) can never arise since there are
no “—" nodes outside the current trée

2. A multiple tree approach with fixedl (i.e. 6 = § for all treesT). ¢ is set to the maximum value subject to
constraints (4). Case (4e) is not a concern siice- 47 = 0 for all pairs of treeq”, 7’. Thus,d is determined
by one of the constraints (4a),(4b),(4c),(4d), and so &fiedual update further progress can be made in at least
one of the trees.

3. A multiple tree approach with variabfe This is the most flexible approach proposed by Cook and R8he [
Updates{dr} could potentially be chosen as to maximize the increasedrdttal objective) . o7, but this
would be too costly. Instead, a certain greedy heuristicégun [8] (see section 3.1).

Let us call the sequence of operations between two suceessymentations a “stage”. Clearly, there are at most
n/2 stages. It can be shown that each stage can perform ato$tasic operations GROW, SHRINK, EXPAND.
Assuming that (i) each dual update results in at least orie bpseration and that (ii) each GROW, SHRINK, EXPAND,
and a dual update take(m) time, we arrive at a straightforward bou6dn?m) for the overall complexity.

Note that assumption (i) is valid for the first two approachdswever, in the third approach valueséf may be
determined by the constraint (4e) rather than (4a),(4b){@d). Thus, theé)(n?m) complexity is not guaranteed for
the variable) approach.

2.4 Comparison of different strategies

There are several factors to consider when choosing whiekegly to use. The first factor may be the number of
basic operations such as GROW, SHRINK, and EXPAND. The sitigk strategy is usually considered to be the least
efficient from this point of view [19, 8]. An intuition here that exploring a single tree may result in a very long
augmenting path and consequently in many basic operatidrike a much shorter augmenting path may exist which
starts from a different tree. The single tree strategy besoparticularly inefficient towards the end. After extepsiv
experiments with the single tree approach and with the plaltree approach with fixetl Gerngross [19] suggested
to use the former for matching the first 95% of the nodes anthtter for matching the remaining 5%. (Matching the
last few remaining nodes often takes the most amount of time.

Let us now discuss the two strategies that grow multiplestr€@ok and Rohe [8] motivated the variablepproach
over fixedsd as follows: computing the value éfrequires examining the edges out of the’'nodes in all trees, but
tight edges will be created only for a very small number osthrees. The experiments in [8] show an improvement
of the multiple tree strategy with variableover the singlﬁz tree implementation of Applegate and Cogk [5



It is not clear, however, whether the explanation in the joney paragraph still holds if priority queues are used
for computingd, as discussed below. In this case the examination of thesaalgef the “+” nodes is not performed
explicitly. Mehlhorn and Schafer [24] implemented a nplkitree approach with fixetland with an extensive use of
priority queues, and showed an improvement over the cod®ok @nd Rohe, sometimes asymptotic.

Still, the variablej approach has a certain advantage over the fixgidce it can increase the dual objective by a
much larger amount. (With fixedlthe dual update is determined as a bottleneck among al| tiedghus can be quite
small.) Intuitively, larger dual updates should result isnaaller number of basic operations.

Using priority queues The second factor to consider when selecting a strategyisffitiency of computing dual
updates satisfying constraints (4). A rather natural idhed has been exploited both for improving the worst-case
bound and for faster real implementations is to store edgpsiority queues, so that the operation of computing the
minimum slack required in (4) can be performed efficiently.

To our knowledge, so far priority queues have been used onlthe first two strategies (single tree and multiple
trees with fixed)). The implementation of Mehlhorn and Schafer uses a sbggia of priority queues calledon-
catenable priority queue within multiple trees with fixed framework. The reason for using this version of priority
queues is that it can handle SHRINK and EXPAND operationg.ifitplementation in [24] achieves thEnm log n)
worst-case bound proved in [28].

Mehlhorn and Schafer pose the question whether the vardapproach can be incorporated irOdnm logn)
algorithm. Unfortunately, this does not look straightfand. The difficulty lies in the following: with the fixed the
slacks of edges of the same type, e.g. extdriar+) edges, are decreased by the same anyrso all these edges
can be stored in a single priority queue. This is no longectse in the variablé approach. Edges between different
pairs of trees should thus be stored in different prioritgugs. As the worst case, the number of trees may (ng
and the number of edges between trees may (be). (We say that there is an edge between teesnd7” if there is
an edge of typé+, +), (+,—) or (—, +) connecting a node € T to a nodev € 7".) If computing the dual updates
and finding new tight edges is done in a naive way by travgrsifyes between trees, this would resulipin) time
per dual update, yielding th@(n?m) overall bound.

3 Description of our implementation

In this work we attempt to use priority queues in a variablpproach. For reasons discussed above we abandoned
the idea of achieving a better bound th@tw?m). Instead, we assume that the worst-case described abos@dbe
occur in practice, i.e. the number of trees and the numbedgé&between trees are much smaller than the number
of nodes and edges in the graph, respectively. This assoimigtivalidated by previous studies: it has been observed
that the algorithm often spends most of the time trying toaimalhe last few remaining nodes, see e.g. [8] (although
constructing a counter-example could potentially be fbe'i

We maintain dynamically an auxiliary gragh’, £) whose nodes correspond to alternating trEed his graph is
stored using the adjacency list representation. Each Wiafe¢he graph has pointers to three priority quepgs™ (7'),
pq™?(T) andpg— (T). These queues store respectiviely +) edges betweent*” nodes of the tred’, (+, @) edges
from “+” nodes of T to free nodes, and-" nodes inT which are blossoms. Similarly, an ed¢g, 7") € £ has
pointers to priority queuesq™ (T, T"), pg™— (T, T") andpg~— (T, T’) which store respectivelf+, +), (+, —) and
(—,+) edges between a nodelhand a node if”.

We use Fibonacci heaps [15] as our priority queues. It reguéimpointers per edge, an integer indicating the degree
of the heap node representing the edge, and a binary flag.€figetbelongs to at most one queue, so no extra memory
is allocated. It should be noted, though, that Fibonaccph@aay not be the optimal choice: it has been shown [25]
that in practice other data structures such as pairing l{&dpare more efficient. Pairing heaps also take less memory.
We plan to investigate alternative priority queue impletagans in the future.

When performing primal updates for tré& we need to determine quickly for edge, v) € E with u € T the
corresponding edg€l’, 7”) € & (if it already exists). One option would be to store an arrbpainters at each tree.
However, this would requir®(|V|?) memory, wherd)| is the number of trees in the beginning of the algorithm
(which can be quite large). We avoid the quadratic memoryirement by using the following scheme. We store
a pointerCURRENT. EDCE at each tree. Initially, these pointers afelLL. Before processing” we go through
edges(T,T") € £ and setCURRENT_ EDGE(T") to point to the edgéT’, 7") (and simultaneously check whether an
augmentation is possible for tregg, 7")). After the update we go through the edg@&sT”) again and set the pointers
back toNULL.

Consider, for example, a graph consisting(,/n) components, where each component contain® épn) odd number of nodes. Assume
that each component is connected via low-cost edges aradtadiff components are connected via high-cost edges, sautpatentations between
two components can be performed only when one of the comp®ihas been completely shrunk. Consider the first stage wheomponent is
completely shrunk. Intuitively, it seems possible to camstta graph such that there would @é,/n) trees in this stage arfd(,/n) dual updates
(determined by low-cost edges), assuming that each upesitis in at most one SHRINK in each component.
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It is not difficult to see how to maintain the auxiliary graplriohg primal updates, as well the correct membership
of edges in priority queues. Consider, for example, the GRip@fation. Suppose that a free matched édge) has
been added to a tré, so thatu becomes a-" hode andv becomes a+" node. First, we process node We addu
to the queueq (T, if u is a blossom. We then go through all incident edgesv). If w is a “+” node in some tree
T’ then we do the following:

e Remove(u, w) from the queugq™? (T”). (Note, each node has a pointer to the tree that it belong®topde
T’ in the auxiliary graph can be easily located.)

e If 7" # T then we locate the edgd’, 7") using pointerCURRENT. EDGE(7") and add(u, w) to the queue
pq~ (T, T). (It may happen thaBURRENT. EDGE(T") is NULL if there is no edg€T’, 7"); in that case we
first allocate and add this edge to the auxiliary graph an@9BRENT. EDGE(T"”) accordingly.)

After processing: we go through all edge®, w) and do the following:

If wis free, addv, w) to pg™2 (T).

If w e T andi(w) = +, remove(v, w) from pg™? (T) and add it topg ™+ (7).

If we T, T # T andl(w) = —, add(v, w) to pg* = (T, T").
o IfweT T #Tandl(w) =+, remove(v, w) frompg™? (T') and add it tapg ™+ (T, T").

In the last two cases we first need to make sure that an @dg€) exists by allocating it, if necessary.

SHRINK, EXPAND and AUGMENT operations can be consideredilsirty. Note, when augmenting tre€®, 7”)
we traverse all edges stored in all queues associatedWithhand incident edges of the auxiliary graph, and deallocate
these trees and edges. This concludes the description aitapes performed with the auxiliary gragh.

Maintaining dual variables Animportantissue is how to store edge slacks and variahlés nodesy. Maintaining
them explicitly would be too costly since after each dualatgpdve would need to go through all nodes and edges in
the tree and update these variables. Following a long toadilve use an implicit method which avoids going through
all nodes and edges. Namely, each nod®s variable;,. The true variabley, can be determined as follows. For
interior nodes inside blossoms and for free exterior nodesavey, = y,. For an exterior node in tréE we have

Yo = Yo + €7 if I(v) = +, andy, = 5, — ep if [(v) = —. Hereer is a variable stored at trée which accumulates
all dual updates foi". We use an analogous technique for edges. Eachedgéu, v) stores a variablel ack(a).

A true slack for an exterior edge = (u, v) is determined as follows: (1) take vals&ack(a); (2) if u € T then
subtract or addy, depending on whethéfu) = + orl(u) = —; (3) do the same for node Whenever a node
changes its label, we go through the incident edgasd updatsl ack(a) accordingly. This is done at the same time
as we update the membershipaoif priority queues.

3.1 Updating duals

In this section we discuss how to compute upddtgs}. A possible heuristic would be to go through tréésn a
certain order and greedily increase as much as possible. Unfortunately, this procedure wouldtgek if there are
circular constraintdy, — o, <0, ..., 0p,_, — o1, < 0,67, — o, < 0. To overcome this issue, Cook and Rohe
propose first to compute strongly connected components 8@ trees in order to detect such circular constraints,
and then use a greedy technique in which a siagkeused for each component. Their Blossom IV implementation
actually uses connected components (CC) instead of syrangihected components; this still guarantees that some
progress will be made.

It is worth noting that such greedy dual updates do not guaeaio make one of the inequalities (4a)-(4d) tight. If
the CC procedure is used, then it may take upta) dual updates before a basic primal operation can be applied.
(Note, each CC update either results in a basic primal oparat merges some components together.) The bound
O(n) can be tight if, for example, there are circular constradgts— dp, < 1,...,0p,_, — 07, < 1,97, — oy < 1.

For this reason we believe that the Blossom IV implememtdtiactuallyO(n®m), rather tharO(n?m).2 The same
applies to our code Interestingly, with the SCC procedure it may take a nongpoinial number of dual updates
before a basic primal operation can be applied, as can berdgrated on the same example.

20ur implementation is actually slightly more complicatédri what is described above. Namely, if we encountet a2) edge(v, w) with
slack 0 while growing node, then instead of addingy, w) to pg™? (T") we addw and the corresponding matching node to the tree, and mark
them as “unprocessed”. Trees are then grown in a depth-¢iastis fashion. Other operations during GROW and AUGMENTukhthus take into
account the “processed” status of nodes. SHRINK and EXPANDaly called if there are no unprocessed nodes.

3| thank Bill Cook for confirming this conclusion.

4lt is not difficult to improve the complexity t®(n2m). For example, one could check after each pass over treesievhaty progress has
been made, and if not make an extra call to the dual updateguoe with fixeds. We decided not to do this, however, in order to guarantee tha
the dual variables stay half-integral for integral inpuigts. 6



We chose the following scheme as our default option. We goutljin trees in a cyclic order performing primal
updates. If no augmentations were performed during a cliele we run the heuristic dual update procedure of Cook
and Rohe with connected components.

Cook and Rohe ask the question whether maximizing the dyattie ), 7 may give any benefit, although
they remark that solving this linear program would be prahiély costly. We decided to investigate this question.
We solved the linear program by reducing it to (the dual o thinimum cost network flow in a graph witjV|
nodes an@|£| edges using the transformation described by Hochbaumd@@]applying the successive shortest path
algorithm of Ford and Fulkerson [4] to the latter problem.many cases we did not see any significant difference.
However, for one class of problems (structured geometstaimces) solving the LP appears to perform better than
greedy dual updates.

The structure of our implementation suggests another Ipiissifor updating duals. Recall that we go through
edgeqT,T") before and after processing tréefor updatingCURRENT_ EDGE pointers. We then may as well com-
pute the maximal dual change for this tree. Unfortunately, we believe that the numberteps can then be non-
polynomial, as with the SCC procedure. Nevertheless, irirdarmal tests we did not see major differences between
different versions of greedy dual updates. In our initighestments (not reported here) we updated duals more fre-
quently (after processing each tr€g and we also used SCC updates at the end of each cycle witlgnoemtations.
For some classes of problems this version actually seemmettorm slightly better than our default scheme with CC
updates only.

3.2 Datastructures

For completeness, we sketch the data structures that we Tikedyraph is stored using the adjacency list represen-
tation. Each edge has pointersTAl L_ ORI G(a), HEAD. ORI G(a), TAl L(a), HEAD(a); the first two point to the
original nodes i/, and the last two point to current pseudonodes. For eactiantede we also store aiNCESTOR
pointer in addition to th&ARENT pointer. ANCESTOR pointers help to determine the exterior grandparent node fo
an interior node more quickly; they are updated using thb pampression technique. In our implementation we try
to make sure thaANCESTOR's point to penultimate nodes (i.e. interior nodes whosepi@rare exterior). Note, ex-
panded nodes cannot be deallocated immediately since ANRESTORS may point to them. Instead, if the number
of expanded nodes exceeds a certain threshold we go thréungitas, correcANCESTOR's and only then deallocate
expanded nodes.

We implemented two versions of the algorithm; we refer tartlas A and B. Version A is somewhat simpler. We
perform all shrinks and expands explicitly, by moving edffesn one pseudonode to another and updaliAdg L
or HEAD pointers accordingly. Edges inside blossoms are not in any priority queue, and sass$fack(a) =
sl ack(a).

With this structure we observed that sometimes SHRINK dmratake a very long time and become the bottle-
neck of the algorithm. A closer inspection revealed thatehg a “cascading” sequence of shrinks during the same
stage in which the degree of the blossom becomes extrentgly. [&or each shrink we go through all incident edges
and updatd Al L or HEAD pointers again and again, and this becomes the bottleneck.

To fix this issue, we implemented a modified version, which aléwversion B. (We used this version in all experi-
ments.) Shrinks are now performed lazily: when contractingdd cycle into a blossom, we go through the incident
edges of “” nodes, but not 4" nodes?® As a result, th&' Al L/HEAD pointers for exterior edges may not be correct,
i.e. they do not point to an exterior node. Thus, when praogssn edge we must now always check for this, and
update thé& Al L/HEAD pointers if necessary. During this update we also move tge &bm the adjacency list of the
interior node to the list of the exterior node. (This implikat we now need to use doubly linked lists).

In version B priority queuegq™ for treesT” may now contain interior edges. Thus, whenever we call the
Fi ndM n operation for this priority queue, we need to check the retdredge. If this edge is interior, we remove it
from the queue and move it to the list of “selfloops” for the piimate node. The only exception is when the ends
of the edge are already penultimate nodes, then we inseedte to the correct place immediately. When the tree
is augmented we go through edges stored in all priority gsi@ssociated with the tree (and also through all edges
incident to “—” nodes), and correct inconsistencies. Processing eaah diting these operations is quite efficient
because of the use BNCESTOR pointers.

When we expand an exterior node, we process selfloops attipeatd nodes. These edges are moved one level
further.

It is worth noting that similar “cascading” behavior can gutially occur during EXPAND operations; the same

edge out of a =" node could be processed many times during the same stagedidNeot put much effort into

5After completing the first draft of this paper, we realizedttthe “cascading shrinks” problem has been fixed in versimnB partially.
Although we no longer go through all incident edges of “+” msdwe traverse their tree children. During a “cascadingueace of shrinks the
blossom may acquire an extremely large number of childrénctware traversed again and again. We observed that foash@ktance in table 9
the B5 method spends most of the time traversing childrerHRISIK operations. We hope to fix this issue in the future.
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optimizing EXPAND operations since in our experience thenhar of expands is usually significantly smaller than
the number of shrinks (so most blossoms are never expand@ki) observation also motivated some of the choices
described earlier; in particular, the use of “selfloops’adsfan expensive part of the operation (determining precise
ends of an edge) to a later EXPAND operation, which may neveun

In most of our tests the time spent in the EXPAND operations megligible. However, we did encounter several
large instances in which these operations were a bottleneck

3.3 Initialization
Similar to the implementations of [8, 24], our code supptiréstwo standard strategies for finding the initial solusion

e Greedy initialization. First, for each node we go through the incident edges, find the smallest weighsahd
1y, to the half of this weight. (This guarantees that all edges have non-negative slacks.) We then go over
nodes again, and for each nodgreedily increase, and choose a matching for if possible.

e Fractional matching initialization. Such initialization was proposed by Derigs and Metz [9fir#it solves the
fractional matching problem (consisting of constraints (1b) and (1d) only) amehtrounds the obtained half-
integral matching. We implemented the approach descrilgefipplegate and Cook [5] with Fibonacci heaps
as priority queues for solving the fractional matching peotn.

3.4 Price-and-repair

A standard approach for solving very dense instances (ergplete graphs) is to usepaice-and-repair technique [10,

5, 8]. It starts by selecting an initial (sparse) subset gesdand then iterates the following procedure. First, thienah
perfect matching is computed over the current subset ofdbjlee next step is to compute slacks of the remaining
edges. (This operation is callgdicing). If all slacks are non-negative then the method stops - we ha optimal
solution. Otherwise we add edges with negative slacks grehtehe procedure.

If a few new edges have been added, then it may be more effioiémtialize the perfect matching algorithm by
repairing the existing solution rather than starting from scratchze®a repair techniques have been proposed in the
literature. We implemented theareless repairs method of Cook and Rohe [8]. (They showed that carelessnepai
outperform the method of Ball and Derigs [6].)

Our code supports the price-and-repair approach by proyidierface functionSt ar t Updat e, AddNewEdge,

Fi ni shUpdat e. TheAddNewEdge function for nodes: andv computes the slack of the edge v) and adds the
edge only if the slack is negative. Notepifandv belong to the same blossom then computing the slack involves
finding the least common ancestor (LCA) of these nodes inrdeeformed by the blossom structure. (More precisely,
we need to determine nodes that are penultimate to kGA( Previous implementations of Applegate and Cook [5]
and Cook and Rohe [8] used efficient data structures for éé@rg LCA. In our code we implemented the data
structure of Berkman and Vishkin [7] that allows to comput@ALin O(1) time. This data structure is constructed
duringSt ar t Updat e and deallocated duringi ni shUpdat e.

Solving complete geometric instances In [5, 8] the price-and-repair approach was used for solemgplete geo-
metric instances (that is, given a set of 2D points, computerémum cost perfect matching in the complete graph
induced by these points; the edge weight is taken as thedeaalidistance rounded to the nearest integer.) We added
this functionality to our code as well. A key computationatk here is identifying edges in the complete graph
with negative slacks. Going through all edges explicitlywaobe computationally infeasible. Instead, we use the
underestimate of the edge slack proposed by Applegate aokl [Gp

sl ack(u,v) > y(u,v) = ¢y — sumMu) — sum)

where

sumov) =y, + Y s

SeO:wes

As suggested in [5], we find edgés, v) with negativey(u, v) and call theAddNewEdge function only for those
edges. Following Cook and Rohe [8], we implementddigree structure for identifying edges witf{u, v) < 0.
(sum(-) is treated as an extra geometric coordinate-anglis treated as the distance function.)

4 Computational results

In this section we compare the performances of the Blossonotlé [8], the code of Mehlhorn and Schafer [24], and
our code [1], version 1.0. We will refer to them as B4, MS and @Spectively. We used the MS code accompanying
8



the paper [24]. It requires the LEDA library [23], versior24.Unfortunately, this version was no longer available.
Instead, we used the current free version of LEREDA- 6. O- f r ee- FC8.i 386- g++- 4. 1. 2- st d), but we had

to make changes to the MS perfect matching code to make it é®mjih the newer library. Mainly, it involved
changing the locations of .h filésNote, the MS algorithm that we tested is not identical to tigethm in LEDA
6.1. A comparison with the latter code is left as a future work

The tests were performed on Intel Pentium 11l processor3Mi3z with 512KB cache and 2GB memory running
Linux 2.6.9. Codes were compiled with the GNU c++ compilegrsion 3.4.6, using the -O5 optimization flag.
Running times were measured via tbeock _get t i ne( CLOCK_ PROCESS_CPUTI MEI D, ...) function. We
counted only the time spent in the main function that is cafter computing the perfect matching; time spent for
reading the problem from a file and allocating the graph wasmatuded.

Below, we report the times in seconds of 6 techniques: ,BY, MS, MS™, B5~, B5. (The “~" flag indicates that
a greedy initialization was used instead of the fractionatahing procedure of Derigs and Metz [9] - see section 3.3).
For the B5 code we also measured the time for initializateithér greedy or fractional) and the time spent in the
EXPAND operations; they are given in square brackets.

We observed that sometimes the MS code had large memoryreetgrits. For some instances it caused disk
swapping; the Unix op command reported that almost all available memory of 2Gballasated to this process. In
the tables below we indicate such cases by “mem”. The mensagaiof B4 and B5 was manageable; for example, for
the largest instance in table 5 B4 required 323Mb (245Mb ey, Bnd for the largest instance in table 9 B4 required
181Mb (183 for B5).

In two cases the MS code also gave incorrect results (tablett® returned solution was either not a perfect
matching or had a larger cost than the solutions returned oami B5. We believe that this was caused by an
overflow: for these instances the cost of the matching exaktite capacity of 32-integer number$hese cases are
marked by “of”.

We used 9 problem types. Note, generators for some of theenaakndom seed as an input. In such cases we
report the average statistics ovenstances with different random seeds; the number of trisl$hen specified in the
table caption. Graph sizes are indicated in the tables ifoadw andm). For all experiments in this paper (except for
those in section 4.2) we randomly permuted the order of nadds®dges of the input graph.

Triangulation instances (tables 1,2) We generated random points from 22° x 22° square and then computed
triangulations of this point set. As in [24], we tested twads of triangulations: Delaunay triangulations (computed
with the code of Shewchuk [26]) and triangulations by a swigepalgorithm (we used the generator accompanying
the paper [24]). Edge weights were set to the Euclideanrtisthetween the endpoints (rounded to the nearest integer
for Delaunay triangulations, and rounded down for swemp-iiiangulations).

Random instances (tables 3,4) We generated random graphs withnodes andn edges (while ensuring that a
perfect matching exists). Edge weights were assigned aramateger value i1, 2'6]. We used the same sizes as
in [24].
Planar Ising models (table 5) We considered the problem of computing a minimum cut in agamaph, where
edge weights can have an arbitrary sign. (Clearly, it isvedent to a maximum cut problem.) In physics it is often
called the ground state computation of an Ising model withoagnetic field. We reduced the problem to a minimum
cost perfect matching problem as described in [27]. (This tha application that motivated our interest in the perfect
matching problem.)

We used 4-connected square grids. Edge costs for the Isoigepn were chosen as random integers from
[_2157 215].
DIMACS instances (tables 6,7,8) We used three families from the first DIMACS implementaticteallenge [21].
They were generated by the following programs:

e hardcard.f written by B. Mattingly. This family was shown Babow to be hard for Edmonds’s cardinality
matching algorithm.

e t.f and tt.f written by N. Ritchey and B. Mattingly. They geate a sequence df one- and tri-connected
triangles, respectively. According to comments, the fastify tends to generate a lot of blossoms.

All three programs take an input numbgt, it is specified in the tables 6,7,8.

6We contacted the authors of [24] about the compilation issBeido Schafer recommended using the latest version ofABizthich now
incorporates a min cost perfect matching algorithm), asgilimg the original code of [24] with a newer version of LEDAmes with no warranty.
Unfortunately, we were not able to do this at the time of wgti we discovered that the perfect matching algorithm inveemeversion of LEDA
had a bug which caused the program to crash. The support tealgosithmic Solutions Software GmbH informed us that thegythad recently
been fixed, but the fix will appear only in the next official e of LEDA after LEDA 6.1 scheduled for the second half ofabet 2008.

“Guido Schafer informed us that some checkers had been addled subsequent version of the code that verify whethervarflow might
occur.



n m B4~ B4 | MS™ MS B5~ B5
10000 29973 || 0.41 0.39 | 127  1.03 | 0.13[0.02,0.00] 0.11[0.04,0.00]
20000 59971 || 2.05 2.01 | 270  2.20 | 0.30[0.05,0.01] 0.27[0.08,0.01]
40000 119968 || 7.70  7.59 | 5.74  4.74 | 0.68[0.11,0.01] 0.60[0.17,0.02]
80000 239970 || 22.1  21.8 | 122 10.0 | 1.49[0.23,0.04] 1.33[0.37,0.04]
160000 479960 || 53.6 52.7 | 30.5  21.3 | 3.34[0.48,0.12] 3.02[0.77,0.12]

Table 1:Delaunay triangulations. ¢ = 20.

n m B4~ B4 | MS- MS B5~ B5
10000 29973 || 1.74 1.66 | 1.56  1.10 | 0.15[0.02,0.00] 0.13[0.04,0.00]
20000 59971 || 8.06 7.89 | 3.38  2.39 | 0.38[0.05,0.01] 0.32[0.10,0.01]
40000 119968 || 38.4 381 | 7.53  5.28 | 0.92[0.11,0.03] 0.77[0.22,0.03]
80000 239970 || 188 188 | 19.2 of | 3.17[0.22,0.26] 2.83[0.47,0.24]
160000 479960 || 550 551 | 43.4 of | 8.75[0.47,0.96] 8.02[0.98,0.94]

Table 2:Sweep-linetriangulations. ¢ = 20.

n m B4~ B4 | MS- MS B5~ B5
10000 60000 || 6.90 1.29 | 3.01  1.24 | 0.41[0.04,0.00] 0.55[0.53,0.00]
10000 80000 || 9.55 1.67 | 3.78  1.47 | 0.56[0.05,0.00] 0.78[0.76,0.00]
10000 100000 || 2.94 225 | 4.55  1.56 | 0.73[0.06,0.00] 0.99 [0.97,0.00]
20000 120000 || 7.93 492 | 6.90 3.23 | 0.99[0.09,0.00] 1.76 [1.72,0.00]
20000 160000 || 21.5 7.79 | 874  3.72 | 1.40[0.12,0.00]  2.31[2.29,0.00]
20000 200000 || 15.2  10.7 | 10.5  4.65 | 1.81[0.14,0.00]  3.00[2.95,0.00]
40000 240000 || 116  22.6 | 21.6  9.12 | 240[0.19,0.01]  5.46 [5.42,0.00]
40000 320000 || 25.6 319 | 20.1  10.5 | 3.20[0.25,0.04] 7.23[7.14,0.00]
40000 400000 || 95.7 43.8 | 24.5 12.0 | 416[0.31,0.18]  8.96 [8.90,0.00]

Table 3:Sparse random instances. ¢ = 20.
n m B4~ B4 | MS™ MS B5~ B5
1000 100000 || 1.05 0.95 | 1.61  0.43 | 0.42[0.05,0.00] 0.39[0.35,0.00]
1000 200000 || 1.97 257 | 3.21  0.78 | 0.87[0.10,0.00]  0.80[0.74,0.00]
1000 400000 || 3.45 4.56 | 4.85 125 | 1.34[0.16,0.00] 1.30[1.18,0.00]
2000 200000 || 4.15 3.38 | 4.57  1.18 | 1.02[0.10,0.00]  1.04[0.99,0.00]
2000 400000 || 5.86 7.92 | 9.27 206 | 2.16[0.22,0.03]  2.15[2.03,0.00]
2000 800000 || 8.46 123 | 13.1 314 | 3.24[0.33,0.00]  3.30[3.12,0.00]
4000 400000 || 892 12.0 | 12.0  2.90 | 2.64[0.23,0.01] 2.81[2.71,0.00]
4000 800000 || 25.7 26.0 | 23.0 6.45 | 559[0.49,0.02]  6.60[6.36,0.00]
4000 1600000 || 20.5 36.7 | 349  9.47 | 839[0.76,0.01]  9.61[9.20,0.00]

Table 4:Dense random instances. ¢ = 20.
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size n m B4~ B4 | MST MS B5~ B5
25 x 25 6230 10591 0.05 0.05 | 0.52 0.53 | 0.03[0.01,0.00] 0.03[0.01,0.00]
35 x 35 12230 20791 0.19 0.8 | 1.11  1.12 | 0.07[0.01,0.00] 0.07[0.02,0.00]
50 x 50 24980 42466 0.58 059 | 236  2.39 | 0.17[0.04,0.00] 0.17[0.06,0.00]
71 % 71 50390 85663 2.27 233 | 502 507 | 0.38[0.09,0.01] 0.39[0.12,0.01]
100 x 100 99980 169966 || 7.14 7.09 | 10.7  10.7 | 0.82[0.18,0.02] 0.83[0.25,0.02]
141 x 141 198790 337943 || 19.7 19.0 | 22.9  22.6 | 1.75[0.38,0.04] 1.81[0.52,0.04]
200 x 200 399980 679966 || 75.2 752 | mem  mem| 3.81[0.79,0.10] 4.02[1.09,0.10]
283 x 283 800870 1361479 || 222 211 | mem  mem| 850[1.69,0.23]  8.70[2.32,0.22]
400 x 400 1599980 2719966 || 634 645 | mem  mem| 18.2[3.59,0.40] 18.8[4.93,0.39]

Table 5: Planar Ising models. ¢ = 20. Note, “size” corresponds to the input planar grid graphilevh andm

correspond to the graph in which a perfect matching is coethut

K n m B4~ B4 | MS™ MS B5~ B5

100 600 80000 31 002 | 024 0.08 | 0.59[0.03,0.00] 0.05[0.05,0.00]

200 1200 320000 322 021 | 1.28 0.32 | 4.86[0.13,0.00]  0.23[0.23,0.00]

400 2400 1280000 341 103 | 9.68  1.37 | 29.6[0.59,0.00] 1.10[1.10,0.00]

800 4800 5120000 || 3607 261 | 41.1 598 | 241[3.18,0.00]  6.26[6.24,0.00]

1600 9600 20480000 - 787 | 177 31.6 | 1637[16.6,0.00]  30.5[30.5,0.00]

Table 6:DIMACS instances: hardcard.f generator.

K n m B4~ B4 | MS™ MS B5~ B5
10000 30000 39999 557 3.13 | 2.89  3.11 | 0.16[0.04,0.00] 0.17[0.06,0.00]
20000 60000 79999 17.3 362 | 612  6.54 | 0.41[0.09,0.00]  0.44 [0.14,0.00]
40000 120000 159999 || 70.6  88.2 | 13.3  13.5 | 0.68[0.19,0.00]  0.90 [0.30,0.00]
80000 240000 319999 305 1521 | 30.0  29.3 | 1.80[0.40,0.00]  1.72[0.58,0.00]
160000 480000 639999 || 4803 809 | mem  mem| 3.67[0.83,0.00]  3.88[1.22,0.00]

320000 960000 1279999 || 1839 1096 | mem  mem| 7.93[1.77,0.00]  9.83[2.60,0.00]
Table 7:DIMACS instances: t.f generator.

K n m B4~ B4 | MS™ MS B5~ B5
10000 30000 59997 023 0.26 | 270  2.65 | 0.25[0.06,0.00) 0.21[0.07,0.00]
20000 60000 119997 || 0.63 044 | 6.32  5.30 | 0.47[0.12,0.00] 0.48[0.15,0.00]
40000 120000 239997 || 1.02 1.57 | 14.6  11.3 | 0.99[0.24,0.00]  1.62[0.33,0.00]
80000 240000 479997 || 4.83 2.85 | 284  28.0 | 2.77[0.50,0.00] 1.82[0.67,0.00]
160000 480000 959997 || 549 9.35 | mem mem| 6.14[1.06,0.00]  5.59 [1.41,0.00]
320000 960000 1919997 || 14.9 158 | mem  mem| 12.4[2.23,0.00]  16.4[2.99,0.00]

Table 8:DIMACS instances: tt.f generator.
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name n m B4~ B4 | MS™ MS B5~ B5
fnl4461 4460 13359 0.04 0.04 | 048 0.37 | 0.03[0.01,0.00] 0.03[0.01,0.00]
brd14051 14050 42134 0.35 0.31 | 213  1.75 | 0.21[0.03,0.00] 0.18[0.06,0.01]
di5112 15112 45800 0.50 0.46 | 2.18  1.65 | 0.23[0.04,0.01]  0.20[0.06,0.01]
digs512 18512 55525 0.44  0.38 | 242  1.94 | 0.22[0.050.00] 0.22[0.08,0.00]
dan59296 59296 177336 1.32 115 | 7.60 6.42 | 0.93[0.16,0.03]  0.80[0.26,0.03]
sral04815 104814 314416 || 4.42 4.60 | 15.3  12.8 | 2.04[0.30,0.33]  1.91[0.43,0.29]
ara238025 238024 714003 186 261 | 61.2 439 | 147[0.72,134] 172 [1.06,156]
Ira498378 498378 1495586 || 339 344 | mem mem| 125[1.59,109] 112 [2.68,96.3]
Irb744710 744710 2234362 || 6585 4978 | mem  mem| 4020 [2.47,3146]  882[3.79,111]

Table 9:TSPLIB and VL SI geometric problems.

Structured geometric instances (table 9) For our last set of problems we used TSPLIB data from [2] nadied
by Gerd Reinelt and VLSI data from [3] provided by Andre Rol{8ome these instances have an odd number of
points; in such cases we removed the last point.) The graglobtined as a Delaunay triangulation of a given set
of 2D points (using the code of Shewchuk [26]). Edge weighgsesset to the Euclidean distance between endpoints
rounded to the nearest integer. The Delaunay triangul&iknown to contain a perfect matching, however this may
not be the case in practice due to numerical errors. To gtesrdinat the initial subset contains a perfect matching, we
compute greedily a matching over the existing edges andatién’ /2 edges between remainingunmatched nodes
(see [1] for more details).

Such problems were used for experiments by Cook and Roh&Hi8ly showed that Delaunay triangulation leads to
a very good approximation to the complete geometric probleelaunay triangulation can also be used as the initial
subset of edges for the price-and-repair technique disduassection 3.4.

From tables 1-9 we can conclude the following:

¢ In the majority of our examples the B5 code outperforms B4 kli&limplementations. For some classes of
problems the improvement is roughly by an order of magni(talgles 1,2,5,7).

e B5 spends most of the time in the fractional matching iriz&tion procedure on problems in tables 3,4,6. Thus,
these problems are “easy” in the sense that they can be dopedctional matching almost to optimality.

e The time in EXPAND operations for the B5 code is negligiblalhinstances except for large VLSI problems
in table 9, where it can become a bottleneck.

Note, the MS code is competitive only on “easy” problems ibl¢a 3,4,6, but with one notable exception - the
ar a238025 instance in tables 9. We believe that this instance indécdite importance of data structures that guar-
anteeO(m log n) work per augmentation for difficult problems.

4.1 Testing dual update strategies

In this section we test the effect of different dual updatatsegies in our code on a subset of problems used earlier:
[P1] Delaunay triangulation with = 80000 (penultimate line in table 1)

[P2] Sweep-line triangulation with = 80000 (penultimate line in table 2)

[P3] Sparse random problem triangulation with= 40000, m = 400000 (last line in table 3)

[P4] Dense random problem triangulation with= 4000, m = 1600000 (last line in table 4)

[P5] Planar Ising model83 x 283 (penultimate line in table 5)

We rant = 5 trials for each problem above. We also used 5 VLSI instarisesdlin the second part of table 9; we
will refer to them as G1, G2, G3, G4, G5.

For P3 and P4 the fractional matching initialization wodlgady solve the problems almost to optimality, therefore
we decided not to use this initialization for them. Thus, wediB5 for P3, P4 and B5 for other problems.

In table 10 we compare the fixédapproach and three variabieapproaches: with connected components (CC),
strongly connected components (SCC) and solving thlezLPdvmtorming it to @ minimum cost network flow problem



fixed § variabled
CcC SCC LP

P1 14.7 [59916,20706,4474] 1.37 [48323,16933,1988] 1.37 [48275,16939,1985] 1.39 [48140,16924,1977]
P2 12.2 [86394,17251,4615] 3.02 [58471,13379,1291] 3.02 [58360,13364,1283] 3.04 [58035,13363,1290]
P3 314 [98712,1736,490] 3.73[47512,13,3] 3.27 [40050,5,0] 3.20 [38808,5,0]

P4 33.0 [6261,54,17] 8.65 [4020,4,1] 8.06 [3582,10,0] 8.06 [3637,5,0]

P5 | 1057 [987480,191765,73823] | 9.09 [711697,136581,24800] | 9.31 [730444,137278,25485] | 11.7 [721123,137182,25430]
G1 0.96 [38977,13050,1839] 0.87 [36043,12065,1326] 0.88 [36213,12069,1334] 0.88 [35834,12041,1312]
G2 3.05 [69594,31617,5645] 2.07 [66028,30151,4295] 2.14 [66137,30269,4367] 1.80 [62395,29120,3403]
G3 | 703[223537,118898,45075] | 173[203919,102791,27280] | 232[204534,105001,29448] | 12.1[163172,81185,11155]
G4 115 [416300,217396,54840] | 113[416308,217184,54719] | 28.0 [384720,196242,32288]
G5 894 [694748,321946,47283] | 908 [699927,323816,49235] | 28.0 [484937,200195,23045]

Table 10:The effect of different dual strategies. The running time excludes the time spent in dual updatesb@ou
precision numbers are used instead of integers. Forpnianal time [GROWSs, SHRINKS, EXPANDS].

f=1.0 = 0.016 1= 0.008 1= 0.004 1= 0.002 1= 0.001

G2
G3
G4
G5

1.80 + 44.1 [3403]
12.1 + 273 [11155]
28.0 + 753 [32288]
28.0 + 2586 [23045]

1.93 + 1.30 [3840]
29.5 + 4.47 [14919]
27.6 + 91.7 [33413]
27.3 + 117 [26391]

1.94 + 0.14 [3989]
30.4 + 1.14 [14724]
35.0 + 15.4 [36298]
30.5 + 29.8 [27976]

1.96 + 0.08 [4023]
31.3 +0.25 [15367]
37.3 + 3.16 [38264]
65.2 + 1.49 [32259]

1.84 + 0.05 [3661]
24.7 + 0.18 [14819]
77.2 4 0.83 [45517]
95.9 + 0.66 [32707]

1.90 + 0.04 [3771]
31.3 4+ 0.12 [16685]
86.1 + 0.50 [46489]
141 + 0.47 [33584]

Table 11: Performance as a function of u. (If the number of trees is smaller tham then duals are updated by
solving the LP, otherwise via CC dual updates.) Double greninumbers are used. Formptimal time+dual time
[EXPANDS]. Note, the CC column in table 10 correspondgte: 0.

(see section 3.1). Note, in these experiments we used dprddision floating point numbers to ensure the correctness
of the LP approach Table 10 reports the running time in secorssluding the time for dual updates. (For fixed

0, CC and SCC the time for dual updates was a small fractioneofdtal time - 15% at most, but for LP dual updates
were the dominating factor.) Three numbers in square btaackpresent mean numbers of GROW, SHRINK and
EXPAND operations, respectively.

The first conclusion that we can draw from table 10 is that thealmer of operations in the fixetlapproach is
consistently larger than in the variabieapproaches. This confirms the finding of Cook and Rohe [8] abiwu
importance of the variablé approach. (Note, the running times of the fixedpproach is also considerably larger
compared to CC and SCC, but this is not a fair comparison sireéixeds approach does not require the auxiliary
graph, and thus can potentially be implemented faster.)

Let us discuss the relative performance of CC, SCC and LRpfedniems P1-P5 they look comparable, so a global
LP approach is unlikely to give much gain even if we could edhe LP very efficiently. However, for VLSI instances
G2-G5 solving the LP results in a significantly smaller numdfebasic operations (especially EXPAND operations)
and consequently in a much smaller time for primal updategottunately, the time for solving the LP negates this
gain.

To remedy the situation, we could solve the LP only if the hai graph is sufficiently small, e.g. the number
of trees is smaller thapn for some constant € [0,1]. Table 11 shows how influences the performance. As
decreases, the time for primal updates and the number of ElKR#perations increase, while the time for dual updates
decreases. For large VLSl instances G3, G4, G5 we get a sigmiifspeed-up with valugse {0.002,0.004, 0.008}
compared to the time reported in table 9. This refutes thgecture of Cook and Rohe [8] that computing an optimal
solution of the linear program is unlikely to be of practizalue due to the time required to solve the LP.

4.2 Complete geometric instances via price-and-repair

In this section we compare the running times for solving clet@ggeometric instances using the iterative price-and-
repair approach discussed in section 3.4. We compare odlsdB4 and B5, since the price-and-repair technique is

8Using an argumentation similar to the one in [5], one can stiawin CC and SCC approaches dual variables are guaramtémdniultiples
of 1/2 throughout the algorithm. However, the LP approadbsdmt have such guarantees, as we observed experimentally.
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not implemented in the MS code. We used the same initial s$uisalges for both codes (computed by the default
setting of the Blossom IV codequad nearest neighbors). The running times below exclude the time for generating
the initial subset. Note, this experiment was the only onghich nodes and edges were not randomly permuted.

name B4 B5 B5 (LP, u = 0.005)

dan59296 | 819  (5) | 10.2[2.03,0.28]  (7) | 10.0[1.94,0.27]  (7)
sral04815| 117  (6) | 31.0[8.65,1.05]  (9) | 25.3[5.86,0.87]  (8)
ara238025| 3496  (5) | 452[351,31.7]  (7) | 114[56.1,5.36]  (8)
Ira498378 | 10758 (6) | 1952[332,837]  (10) | 2118[230,1001] (11)
Irb744710 | 32364  (5) | 3647[3439,23.9] (8) | 329[191,5.95]  (7)

Table 12:Complete geometric instances via price-and-repair.

Motivated by experiments in the previous section, we tethhedB5 code with the default settings and with the
optionu = 0.005 (see section 4.1 for the description of this parameter;dption required double precision floating
point numbers). Running times are given in table 12. The remirbround parentheses gives the number of iterations
of the price-and-repair method. For the B5 code we also tépeitime spent in the perfect matching subroutine (the
first number in square brackets) and the time inAtldNewEdge function (the second number in square brackets).

5 Conclusions and future work

We described a new implementation of Edmonds’s blossonrigtigofor computing a perfect matching of minimum
cost. In the majority of our experiments our Blossom V coderformed previous implementations of Cook and
Rohe [8] and of Mehlhorn and Schafer [24] (although we wdyle &0 compare only with the original code of [24]
adapted to compile with a newer LEDA library, not with theaithm in the current LEDA version). For some classes
of problems the improvement is roughly by an order of magtgt(iables 1,2,5,7).

On large VLSI instances we observed two interesting effaotsexhibited on other problems: (i) the time for
EXPAND operations often becomes the bottleneck, and (idating the duals by solving the linear program gives a
substantial speed-up compared to greedy dual updateserubuk may include changing the data structures to make
EXPANDs more efficient (although this may degrade the perforce on other classes of problems where EXPANDs
are not a bottleneck), and speeding up the algorithm forirsplthe linear program for the dual updates. (At the
moment we transform the problem to a minimum cost flow as de=stby Hochbaum [20] and then use our own
implementation of a successive shortest path algorithm.)

In the future we may also try to implement a maximum cost (perfect) matching algorithm, using the framework
of the Blossom V code.
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