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Abstract

Tree-reweighted max-product (TRW) mes-
sage passing [9] is a modified form of the or-
dinary max-product algorithm for attempt-
ing to find minimal energy configurations in
Markov random field with cycles. For a TRW
fixed point satisfying the strong tree agree-
ment condition, the algorithm outputs a con-
figuration that is provably optimal. In this
paper, we focus on the case of binary vari-
ables with pairwise couplings, and establish
stronger properties of TRW fixed points that
satisfy only the milder condition of weak tree
agreement (WTA). First, we demonstrate
how it is possible to identify part of the op-
timal solution—i.e., a provably optimal solu-
tion for a subset of nodes— without knowing
a complete solution. Second, we show that
for submodular functions, a WTA fixed point
always yields a globally optimal solution. We
establish that for binary variables, any WTA
fixed point always achieves the global max-
imum of the linear programming relaxation
underlying the TRW method.

1 Introduction

Markov random fields (MRFs) provide a powerful
framework for capturing dependencies among large
collections of random variables [8]. One problem is
determining a most probable configuration, or equiv-
alently, a configuration with minimal energy. For
tree-structured MRFs, minimal energy configurations
can be computed efficiently by the max-product algo-
rithm [8]. For graphs on cycles, in contrast, the prob-
lem of computing minimal energy configurations is in-
tractable in the general setting, which motivates the
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development of approximate methods for attempting
to find a minimum energy configuration. One widely-
used heuristic is to apply the max-product algorithm
to an MRF with cycles. This method, though conver-
gent on trees, may fail to converge when applied to a
graph with cycles. Moreover, although there are cer-
tain “local optimality” guarantees associated with any
max-product fixed point [3, 10], it is also straightfor-
ward to construct problems for which the max-product
algorithm will yield a non-optimal configuration.

In contrast to the ordinary max-product algorithm,
the class of tree-reweighted (TRW) max-product algo-
rithms [9] have certain correctness guarantees. In par-
ticular, for any TRW fixed point that satisfies strong
tree agreement, the algorithm outputs a provably op-
timal configuration. However, not all fixed points sat-
isfy this requirement; in general, they are characterized
by a milder condition known as weak tree agreement
(WTA) [6]. The main contribution of this paper is to
establish a number of optimality properties of TRW
fixed points that satisfy only the WTA condition. Our
work focuses in particular on the case of binary vari-
ables with pairwise couplings. First, we establish that
even when strong agreement does not hold, a WTA
fixed point can still be used to provably certify a sub-
set of an optimal configuration. Second, we prove that
strong agreement can always be obtained for the class
of submodular energy functions. Third, we show that
for binary variables, a WTA fixed point always speci-
fies a global optimum of the linear programming (LP)
relaxation that underlies TRW message-passing.

The results and analysis of this paper focus primar-
ily on the TRW message-passing updates. However,
the link to the TRW-LP (namely, the proof that any
WTA fixed point is a dual TRW-LP solution for bi-
nary problems) allows us to relate our results to other
work on LP formulations. Although it is known that
submodular problems can be solved by flow-based [1]
and other LP formulations [2], our work establishes
that distributed TRW message-passing also solves such



problems. Other work [2, 5] has studied LP relaxations
closely related to the TRW-LP, and established perfor-
mance guarantees for certain MRFs (e.g., for metric
labeling). The results of this paper differ qualitatively
from this work: instead of bounding the quality of an
approximate solution, we provide conditions for the
TRW method to exactly specify (a subset of) vari-
ables in a globally optimal configuration. Our results
also have connections with prior work on binary inte-
ger programming from the combinatorial optimization
literature [1, 4]. In particular, previous work [4] has es-
tablished a weak persistency property for the so-called
Rhys relaxation. This result turns out to be related
to our characterization of WTA fixed points, as we
discuss at more length following Theorem 4.

The remainder of this paper is organized as follows.
Section 2 is devoted to preliminaries, including no-
tation and background on Markov random fields and
max-product message-passing. In Section 3, we de-
scribe tree-reweighted (TRW) message-passing algo-
rithms and their basic properties. Section 4 contains
statements and proofs of our theoretical guarantees on
TRW message-passing. We present some experimental
results in Section 5, and conclude with a discussion in
Section 6.

2 Preliminaries

We begin with necessary background on Markov ran-
dom fields, the ordinary max-product algorithm, and
tree-reweighted message-passing algorithms.

Energy functions and MRFs: Consider an undi-
rected graph G = (V,E), consisting of a set of vertices
V and a set of edges E. We denote by (s, t) the edge
between vertex s and t (or equivalently, for this undi-
rected graph, between t and s). A discrete Markov
random field (MRF) is defined by associating to each
vertex s ∈ V a variable xs taking values in some dis-
crete space Xs. Of primary interest in this paper is the
binary case Xs = {0, 1}. By concatenating the vari-
ables at each node, we obtain a vector x with n = |V |
elements, taking values in X n = {0, 1}n. Unless noted
otherwise, we use symbols s and t to denote nodes in
V , and j and k to denote particular values in {0, 1}.

In this paper, we consider Markov random fields of
the form p(x; θ) ∝ exp{−E(x ; θ)}, where E is an en-
ergy function. We parameterize the energy function
in terms of the following collection of functions. For
each s ∈ V and value j ∈ {0, 1}, let δj(xs) denote
an indicator function that is equal to one if xs = j,
and zero otherwise. Taking products of the form
δj(xs) δk(xs) yields indicator functions for the event
{xs = j, xt = k}. Lastly, we define a constant function

φconst(x) = 1 for all x ∈ X n. With this set-up, the
canonical overcomplete representation is given by

{φconst(x)} ∪ {δj(xs) | j ∈ {0, 1}, s ∈ V } ∪

{δj(xs)δk(xt) | (j, k) ∈ {0, 1}2, (s, t) ∈ E}. (1)

Note that there holds (st; jk) ≡ (ts; kj), so that θst;jk

and θts;kj are the same element. It will sometimes be
convenient to denote elements θs;j and θst;jk by θs(j)
and θst(j, k), respectively. Finally, we use the overcom-
plete potentials (1) and parameters θ to define single
node functions θs(xs) =

∑
j θs;jδj(xs) and edgewise

functions θst(xs, xt) =
∑

j,k θst;jkδj(xs)δk(xt).

With these notational conventions, the energy function
E(x ; θ) can be decomposed as a constant term plus
a sum over the vertices and edges of the graph in the
following way:

E(x ; θ) = θconst +
∑

s∈V

θs(xs)+
∑

(s,t)∈E

θst(xs, xt). (2)

An important property of the representation (1) is its
overcompleteness, meaning that many different param-
eter vectors θ can be used to parameterize the same
energy function. If two parameter vectors θ and θ′ de-
fine the same energy function (i.e. E(x ; θ′) = E(x ; θ)
for all x ∈ X n), then θ′ is called a reparameterization
of θ, and the relation is denoted by θ′ ∼= θ. As a
particular example, it can be seen the energy func-
tion is preserved by adding a constant to θconst, and
then subtracting the same constant from the vector
θ1 = {θ1;j , j ∈ X1}, so that the underlying parameter
vectors represent a reparameterization.

Min-marginals: A min-marginal is a function that
provides information about the minimum values of the
energy under different constraints. In precise terms,
we define Φ(θ) := minx∈Xn E(x ; θ), and

Φs;j(θ) := min
{x∈Xn | xs=j}

E(x ; θ) (3a)

Φst;jk(θ) := min
{x∈Xn | xs=j, xt=k}

E(x ; θ). (3b)

We refer to the functions Φs;j(θ) and Φst;jk(θ) as the
min-marginals for node s and edge (s, t) respectively.

Max-product and normal form: The max-
product (min-sum) algorithm [8] is used for exact com-
putation of minimal energy configurations in trees, as
well as for approximate computation in graphs with
cycles. Although max-product is usually specified in
terms of message-passing, it can also be formulated in
terms of reparameterization operations on the vector
θ. More concretely, sending a message from node s to
node t is equivalent to performing a certain reparam-
eterization of vectors θst and θt. In this context, it



can be shown [10] that the vector θ is a min-sum fixed
point if and only if it satisfies the following conditions
for each direction (s → t) of every edge in the graph:

min
j∈Xs

{θs;j + θst;jk} = constst ∀ k ∈ Xt, (4)

where constst is a constant independent of j and k.
With this set-up, we say that a vector θ is in normal
form if it satisfies equation (4) for each direction of
every edge in the graph. We say that θ is in canonical
normal form if in addition it satisfies the following
conditions:

min
j∈Xs

θs;j = 0 ∀ s ∈ V (5a)

min
(j,k)

(
θs;j + θst;jk + θt;k

)
= 0 ∀ (s, t) ∈ E. (5b)

Any vector θ in a normal form can be reparameterized
into a canonical normal form by subtracting a constant
from vectors θs and θst and adding the same constant
to θconst. Moreover, it can be seen that whenever θ
is in canonical normal form, then the constant constst

in equation (4) must be zero (see [6]). If graph G is
a tree and θ is in canonical form, then the values θs;j

and θs;j + θst;jk + θt;k are equivalent [10], up to an
additive constant offset, to the min-marginals defined
in equation (3), and there holds Φ(θ) = θconst.

3 Tree-reweighted message-passing

At a high level, the underlying motivation of tree-
reweighted message-passing [9] is to maximize a lower
bound on the the minimal energy based on a convex
combination of min-marginal values defined by trees.
As we describe here, this lower bound is tight when
the strong tree agreement condition holds, in which
case the algorithm outputs a minimum energy con-
figuration. Weak tree agreement (WTA) is a milder
condition that is satisfied by all TRW fixed points.

Convex combinations of trees: Let T be a col-
lection of trees contained in the graph G, and let
ρ := {ρ(T ) | T ∈ T} be a probability distribution on
T. Throughout the paper, we assume that each tree
T ∈ T has a non-zero probability (i.e. ρ(T ) > 0), and
that each edge in graph G is covered by at least one
tree. For a given tree T = (V (T ), E(T )), we define the
subset I(T ) ⊂ I as follows

{const}∪{(s; j) | s ∈ V (T )}∪{(st; jk) | (s, t) ∈ E(T )},

corresponding to those indexes associated with vertices
and edges in the tree.

Given a tree T ∈ T, an energy parameter θ(T ) is tree-
structured if it belongs to the constraint set

A(T ) := {θ(T ) ∈ R
d | θα(T ) = 0 ∀ α ∈ I(T )\I}. (6)

In words, any member of A(T ) is a vector of
length |I| with zeros in all elements not corre-
sponding to vertices or edges in the tree. Con-
catenating a set of tree-structured vectors (one for

each tree T ∈ T) yields a larger vector ~θ =
{θ(T ) | T ∈ T}, which by definition is a member of the

set A := {~θ ∈ R
d×|T | | θ(T ) ∈ A(T ) for all T ∈ T}.

For each tree T , we consider the associated min-
function ΦT (θ(T )) = minx∈Xn E(x ; θ(T )). As the
minimum of a set of linear functions, each such func-
tion ΦT is concave in θ. We now define a new function
Φρ : A → R as a the convex combination Φρ(~θ) :=∑

T∈T
ρ(T )ΦT (θ(T )). Since each ΦT is concave, the

function Φρ is also concave. It can be shown [9, 6]

that for any vector ~θ ∈ A that satisfies the relation∑
T∈T

ρ(T )θ(T ) ∼= θ̄, the value Φρ(~θ) is a lower bound
on the optimal value of the energy for vector θ̄. This
lower bound is the motivation for considering the fol-
lowing constrained maximization problem:

max
~θ∈A

Φρ(~θ) subject to
∑

T∈T

ρ(T )θ(T ) ∼= θ̄. (7)

Note that the constraint means that the parameters∑
T∈T

ρ(T )θ(T ) and θ̄ are different parameterizations
of the same energy function. This constraint is equiv-
alent to a set of linear constraints on ~θ.

Tree agreement: A number of different tree-
reweighted message-passing (hereafter TRW) algo-
rithms have been developed [9, 6]. They share the
common goal of maximizing the function Φρ, and all
maintain the constraint in equation (7). The sequen-
tial TRW algorithm [6] also has the desirable property
that of never decreasing the function Φρ, and is guar-
anteed to have a limit point that satisfies the weak tree
agreement (WTA) condition.

For any energy parameter vector θ, let
OPT(θ) := {x ∈ X n | E(x ; θ) = Φ(θ)} be the set
of configurations x ∈ X n that are optimal for the
energy function defined by θ. Note that for each
θ, OPT(θ) is a particular subset of X n. Naturally,
the notation OPT(θ(T )) denotes the set of optimal
configurations for the tree-structured energy func-
tion defined by θ(T ). Given a collection ~θ ∈ A of
tree-structured parameters, we define the Cartesian
product OPT(~θ) :=

⊗
T∈T

OPT(θ(T )) of all the sets
of optimal configurations for vectors θ(T ), as T ranges
over T.

We say that ~θ satisfies the tree agreement (TA) condi-
tion if the intersection ∩T∈TOPT(θ(T )) is non-empty,
meaning that there exists at least one configuration x∗

that is optimal for each one of the trees. The signifi-
cance of tree agreement is demonstrated by the follow-
ing result:



Theorem 1. [9] For some given ρ, suppose that the

vector ~θ obeys the constraint in equation (7), and sat-
isfies the TA condition with configuration x∗. Then
the configuration x∗ is minimal energy for E(x ; θ̄).

Therefore, the strong TA condition dictates whether a
given vector ~θ can be used to find an optimal configu-
ration.

Weak tree agreement: For analyzing fixed points
of tree-reweighted message-passing, it turns out to be
useful to introduce a refined notion, to which we refer
as the weak tree agreement (WTA) condition. In a cer-
tain sense, this condition characterizes local maxima
of the algorithm with respect to function Φρ. More
precisely, once WTA condition has been achieved, the
value of function Φρ will not change [6].

For each tree T , let S(T ) ⊆ X n be a set of configura-
tions, and let S = ⊗T∈TS(T ) be the Cartesian product
of all these subsets. We say that the family S is con-
sistent if it satisfies the following three conditions:
(a) For any tree T , the set S(T ) is non-empty.
(b) Let s be a vertex belonging to both trees T and

T ′. Then for any configuration x ∈ S(T ), there exists
a configuration x′ ∈ S(T ′) such that xs = x′

s.
(c) Suppose that edge (s, t) is contained in trees T and

T ′. Then for any configuration x ∈ S(T ), there exists a
configuration x′ ∈ S(T ′) such that (xs, xt) = (x′

s, x
′
t).

We then say that the vector ~θ = {θ(T ) | T ∈ T} sat-
isfies the weak tree agreement condition if there exists
a family S ⊆ OPT(~θ) that is consistent. Note that
the WTA condition is a generalization of the TA con-
dition; more precisely, it is easy to see that the TA
condition implies the WTA condition.

4 Optimality properties

The analysis in the remainder of the paper is made
under the following standing assumptions:
A1. The variable spaces are binary at each node (i.e.,
Xs = {0, 1} for all s ∈ V ).

A2. We have found a collection ~θ = {θ(T ) | T ∈ T}
such that (i) It satisfies the WTA condition, and (ii)
it specifies a ρ-parameterization of θ̄, meaning that∑

T∈T
ρ(T )θ(T ) ∼= θ̄.

It can be shown [9] that there always exists a vector
~θ that satisfies A2. Moreover, Theorem 1 guarantees
that a minimum energy configuration can be obtained
whenever ~θ satisfies (strong) tree agreement. Our goal

is analyze properties of ~θ when it only satisfies weak
tree agreement.

The following concepts are useful in our analysis.
Given a consistent family S, we define for each

node s ∈ V the set χs(S) ⊆ {0, 1} of possible
values of xs for configurations x ∈ S(T ), where tree
T ∈ T contains node s. Since S is a consistent
family, this definition does not depend on the tree
(as long as it contains s). Moreover, for an edge
(s, t), we define the set χst(S) ⊆ {0, 1} × {0, 1}
in an analogous manner. More precisely, we define
χs(S) := {j ∈ {0, 1} | ∃ T ∈ Ts,x ∈ S(T ) s.t. xs = j};
similarly, the set χst(S) is given by

{(j, k) | ∃ T ∈ Tst,x ∈ S(T ) s.t. (xs, xt) = (j, k)}.

where Ts and Tst denote the sets of trees in T contain-
ing node s and edge (s, t), respectively. The following
properties are easy to verify:

Lemma 1. For any consistent family S, the optimal
local sets satisfy the following properties:

(a) If (j, k) ∈ χst(S), then j ∈ χs(S) and k ∈ χt(S).

(b) If j ∈ χs(S) then there exists k ∈ Xt such that
(j, k) ∈ χst(S).

(c) For any vector γ in canonical normal form:
(i) If j ∈ χs(S), then γs(j) = 0; and
(ii) If (j, k) ∈ χst(S), then γst(j, k) = 0.

Correctness of individual variables; In this sec-
tion, we show that even if the strong TA condition is
not satisfied, a WTA fixed point ~θ can still yield useful
information about a subset of an optimal solution.

Theorem 2. Let ~θ be a WTA fixed point, with corre-
sponding consistent collection S ⊆ OPT(~θ). Let V fix

be the set of vertices such that χs(S) contains a sin-
gle element js. Then it is always possible to find a
minimum energy configuration x∗ of E(x ; θ̄) such that
x∗

s = js for all s ∈ V fix.

Proof. To start, we assume without loss of general-
ity that for every tree T ∈ T, the parameter θ(T )
is in canonical normal form and θ(T )const = 0. (If
not, it can be converted to this form running the or-
dinary max-product algorithm for the tree; the key
properties of the collection OPT(~θ) are not modi-
fied. Moreover, the assumption about the constant
term does not affect the theorem). We then define
V fr := V \V fix, corresponding to the set of “free” ver-
tices (i.e., not fixed). The two subsets V fr and V fix in-
duce particular subgraphs of the original graph, which
we denote by Gfr = (V fr, Efr) and Gfix = (V fix, Efix)
respectively. As illustrated in Figure 1, these sub-
graphs induce partitions of the vertex and edge set,
where Ebou = {(s, t) ∈ E | s ∈ V fr, t ∈ V fix} is the set
of boundary edges crossing between V fix and V fr. This
graph-based decomposition induces a parallel decom-
position of the vector θ̂ :=

∑
T∈T

ρ(T )θ(T ) into three
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Figure 1. Partition of the graph G into a subgraph
Gfix = G[V fix] induced by the fixed vertices, and
a subgraph Gfr = G[V fr] induced by free vertices.
The boundary edges Ebou cross between these two
node-induced subgraphs.

parts θ̂fix = θ̂(Gfix), θ̂fr = θ̂(Gfr), and θ̂bou = θ̂(Ebou)
as follows

θ̂ = θ̂fix + θ̂fr + θ̂bou (8a)

E(x ; θ̂) = E(x ; θ̂fix) + E(x ; θ̂fr) + E(x ; θ̂bou). (8b)

With this set-up, our approach is to define a configura-
tion x∗, and then prove that it is minimum energy for
all three components in the decomposition (8b). Doing
so guarantees that x∗ is a minimum energy configura-
tion for E(x ; θ̄), since

E(x∗ ; θ̄)
(a)
= E(x∗ ; θ̂)

(b)

≤ E(x ; θ̂fix) + E(x ; θ̂fr) + E(x ; θ̂bou)

(c)
= E(x ; θ̄).

where equalities (a) and (c) follow since θ̄ ∼= θ̂; and
inequality (b) follows from decomposition (8b) and the
optimality of x∗ is for each of the three components.

We construct x∗ in the following way. First, for all s ∈
V fix, define x∗

s = js. Second, for nodes s ∈ V fr, choose

some z∗ ∈ arg minx E(x ; θ̂(Gfr)), and set x∗
s = z∗s . By

definition, these choices ensure that x∗ is a minimum
energy configuration for E(x ; θ̂(Gfr)). Next we prove
that the same holds for the other two components:

Component θ̂(Gfix) Let us define a projection op-
eration on Gfix = (V fix, Efix) as follows: given a vector
θ, we define

Πfix(θ)α =

{
θα if α ∈ I(V fix) ∪ I(Efix)

0 otherwise.
(10)

Consider the tree-structured parameters θ(T ) that

form the collection ~θ; of interest to us are their projec-
tions γT := Πfix(θ(T )) onto the graph Gfix. Using defi-
nition (10) and Assumption A2, we have the decompo-

sition θ̂(Gfix) ∼=
∑

T∈T
ρ(T )γT , and we are guaranteed

that each γT is in canonical normal form. Moreover,
by construction of x∗, we have γT

s (x∗
s) = 0 for any node

s and γT
st(x

∗
s, x

∗
t ) = 0 for any edge (s, t). These proper-

ties guarantee that E(x∗ ; γT ) = 0 = γT
const = ΦT (γT ),

implying that x∗ is an optimal configuration for pa-
rameter vector γT . Consequently, the (strong) tree

agreement condition is satisfied for θ̂(Gfix) and the de-
composition {γT | T ∈ T}; by Theorem 1, the vector

x∗ is optimal for component θ̂(Gfix).

Component θ̂(Ebou) This case is slightly more com-
plicated than the previous one, and requires the as-
sumption that Xs = {0, 1} for all s ∈ V (which we have
not yet used). Consider a boundary edge (s, t) ∈ Ebou

such that s ∈ V fix and t ∈ V fr. By definition of S and
V fix, we have χs(S) = {js} and χt(S) = {0, 1}, from
which Lemma 1 implies that χst(S) = {(js, 0), (js, 1)}.
For some tree T ∈ T containing edge (s, t), let us de-
fine the shorthand γ := θ(T ); of interest to us are the
parameters γs, γt and γst.

Since γ = θ(T ) is in the canonical normal form, it must
satisfy the fixed point condition (4) for each direction
of every edge (s, t) ∈ E(T ). Moreover, Lemma 1 im-
plies that

γs(js) = γt(0) = γt(1) = 0 and γs(1−js) ≥ 0.
(11)

Therefore, the fixed point condition (4) for directed
edge (t → s) reduces to

min
k∈{0,1}

(
γst(j, k)

)
= 0 ∀ j ∈ {0, 1}. (12)

Moreover, the fact that (js, 0) and (js, 1) are both in
χst(S) implies that Φst;js0(γ) = Φst;js1(γ), which in
turn implies that

γs(js) + γst(js, 0) + γt(0) = γs(js) + γst(js, 1) + γt(1).

This equation, in conjunction with equation (11), im-
plies that γst(js, 0) = γst(js, 1) . Combining this
equality with condition (12) for j = js yields

γst(js, 0) = γst(js, 1) = 0. (13)

We have shown that equation (13) holds for γ = θ(T )
defined by any tree T containing a boundary edge
(s, t). Since equation (13) also holds trivially for any
tree T not containing (s, t), the same statement holds

for the convex combination, θ̂ =
∑

T∈T
ρ(T )θ(T ).

More specifically, for any boundary edge (s, t) ∈ Ebou,

we have θ̂st(js, 0) = θ̂st(js, 1) = 0 and θ̂st(1−js, 0) ≥ 0,

and θ̂st(1 − js, 1) ≥ 0. These statements imply that

E(x∗ ; θ̂(Ebou)) = 0 and E(x ; θ̂(Ebou)) ≥ 0 for all
x ∈ Xn, meaning that x∗ is an optimal configuration
for vector θ̂(Ebou) as claimed.

An immediate consequence of Theorem 2 is that for
any vertex s ∈ V fix with χs(S) = {j}, it necessarily
holds that Φs;1−j(θ̄) ≥ Φs;j(θ̄). In fact, this obvious
result can be strengthened in the following way.



Corollary 1. Assume without loss of generality that
each vector θ(T ) is in canonical normal form. Con-
sider any node s ∈ V fix such that χs(S) = {j}. Then

the quantity C := θ̂s;j̄ =
∑

T∈T
ρ(T )θs;j̄(T ), where

j̄ := 1 − j, gives a lower bound on the difference in
min-marginals as follows:

Φs;j̄(θ̄) ≥ Φs;j(θ̄) + C = Φ(θ̄) + C. (14)

The proof is omitted due to space constraints (but
the argument is similar to the previous theorem).
An important consequence of Corollary 1 is that if
θs;j̄(T ) > 0 for at least one tree T , then it follows that
x∗

s = j in all optimal configurations.

Optimality for submodular functions: In this
section, we prove that tree-reweighted message-passing
is always guaranteed to compute a minimum energy
configuration for submodular energy functions. An en-
ergy function is submodular if for every edge (s, t) ∈ E,
the vector θ̄st satisfies the following inequality:

θ̄st;00 + θ̄st;11 ≤ θ̄st;01 + θ̄st;10. (15)

It is well-known that any submodular energy function
can be minimized in polynomial time by reducing the
problem to a maximum flow problem on an auxiliary
graph [1]. The main result of this section is to show
that an optimal solution can also be obtained by TRW
message-passing, which suggests that TRW should also
behave well for near-submodular functions (see Sec-
tion 5). It should also be noted that the ordinary max-
product algorithm does not have a similar guarantee,
in that it may output a non-optimal configuration even
for a submodular problem.

Theorem 3. Suppose that assumptions A1 and A2
hold, ~θ satisfies the WTA condition, and that the en-
ergy function E(x ; θ̄) is submodular. Using the no-
tation of Theorem 2, consider configurations x and y

defined as follows:

xs :=

{
js if s ∈ V fix

0 if s ∈ V fr
ys :=

{
js if s ∈ V fix

1 if s ∈ V fr

(16)
Then both x and y are optimal configurations for θ̄.

Proof. Using the same notation as in the proof of The-
orem 2, consider an edge (s, t) ∈ Efr, and let us analyze
the parameter θ(T ) for some T containing edge (s, t).
Since s, t ∈ V fr we have χs(S) = χt(S) = {0, 1}; using
Lemma 1, this implies that

θs;0(T ) = θs;1(T ) = θt;0(T ) = θt;1(T ) = 0. (17)

Using equation (4), we conclude that all elements of
vector γst are non-negative.

We now claim that θst;00(T ) = 0 for all trees that
contain edge (s, t). Suppose that this were not the
case—namely, that there exists some tree T ′ such
that the vector θ(T ′) satisfies θst;00(T

′) > 0, whence
(0, 0) /∈ χst(S). Using Lemma 1, this fact implies that
{(0, 1), (1, 0)} ⊆ χst(S). Consequently, for all trees T
containing edge (s, t), there must hold

θst;01(T ) = θst;10(T ) = 0. (18)

Since these properties must also hold for the convex
combination θ̂ :=

∑
T ρ(T )θ(T ), we have thus estab-

lished that

θ̂st;00 > 0, θ̂st;01 = θ̂st;10 = 0, and θ̂st;11 ≥ 0.
(19)

For binary problems, it can be shown [6] that the

quantity θ̂st(0, 1) + θ̂st(1, 0)− θ̂st(0, 0)− θ̂st(1, 1) is an
invariant, equal to the same constant for any repa-
rameterization of θ̄. Therefore, we have shown that
θ̂st;01 + θ̂st;10− θ̂st;00− θ̂st;11 is equal to θ̄st;01 + θ̄st;10−

θ̄st;00 − θ̄st;11. Note that the first sum (involving θ̂) is
negative because of conditions (19), whereas the sec-
ond sum (involving θ̄) is non-negative since E(x ; θ̄) is
submodular. This contradiction establishes our claim.

Thus, we have established that for all edges (s, t) ∈ E fr

and trees T , the vector θ(T )st is non-negative with its
(0, 0) element equal to zero. Combining this fact with
the properties given in the proof of theorem 2 yields
that for any tree T ∈ T, we have θ(T )s(xs) = 0 for any
node s, and and θ(T )st(xs, xt) = 0 for any edge (s, t).
Therefore, it follows that E(x ; θ(T )) = θ(T )const =
Φ(θ(T )), meaning that x is an optimal configuration
for vector θ(T ). Since this holds for every T , the family
~θ satisfies the TA condition for x, whence Theorem 1
yields that x is an optimal configuration for vector
θ̄. A similar argument establishes that y is also an
optimal configuration.

Global maximum of the lower bound As dis-
cussed in Section 2, the underlying goal of TRW al-
gorithms is to solve maximization problem (7), which
can be reformulated as a linear program. Since this is a
simple convex problem, one might expect that a TRW
fixed point always specifies a global maximum of the
lower bound (7). However, Kolmogorov [6] provided
a counterexample to show that this is not the case in
general. This counterexample involves an energy func-
tion with ternary state spaces. Interestingly, this fact
turns out to crucial: as we now show, for functions of
binary variables the two conditions are equivalent.

Theorem 4. For binary problems, any vector ~θ sat-
isfying conditions A1 and A2 is a global maximum of
problem (7).
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Figure 2. Panels (a) and (b): Plots of correct percentage pcor versus the potential strength σ · d (where σ is
interaction strength and d is node degree) for grids (panel (a)) and complete graphs (panel (b)). Different curves
in each panel correspond to different graph sizes N ∈ {4, 8, 16, 32, 64, 128} (from top to bottom). Panels (c) and
(d): Plots of correct percentage pcor versus the mixing parameter α ∈ [0, 1]. for grids (panel (c)) complete graphs
(panel (d)). Different curves in each panel correspond to different potential strengths σ · d ∈ {2, 4, 6, 8, 10} for
grids and σ · d ∈ {1, 2, 3, 4, 5} for complete graphs (from top to bottom).

Proof. The proof is based on the Lagrangian dual as-
sociated with problem (7) (see [9]). More concretely,
our approach is to specify a dual feasible solution, and
then show that the associated dual value attains the
primal value Φ(~θ), which guarantees optimality.

We assume without loss of generality that each vector
θ(T ) is in the canonical normal form. For any vector
in this form [6], we have ΦT (θ(T )) = θ(T )const, so that

Φρ(~θ) = θ̂const where θ̂ =
∑

T∈T
ρ(T )θ(T ). The dual

problem given in [9] is the linear program

min
τ∈Rd

〈θ̄, τ〉 = min
τ∈Rd

∑

α∈I

θ̄ατα (20)

subject to τ belonging to the constraint set
LOCAL(G) defined by the constraints τ ∈ R

d
+;

τconst = 1;
∑

j∈Xs
τs;j = 1 for all s ∈ V ; and∑

j∈Xs
τst;jk = τt;k for all (s → t) ∈ E and k ∈ {0, 1}.

We specify a dual solution τ ∗ based on sets χs(S) and
χst(S) for nodes s ∈ V and edges (s, t) ∈ E in the
following way:

• for each node s ∈ V , we define the vector τ ∗
s as

follows: If χs(S) = {j}, then τ∗
s;j = 1, whereas if

χs(S) = {0, 1}, then τ∗
s;j = τ∗

s;1−j = 0.5.

• The vector τ∗
st for each edge (s, t) ∈ E is defined

as follows. (i) If χst(S) = {(j, k)}, then τ∗
st;jk =

1; (ii) If χst(S) = {(j, 0), (j, 1)}, then τ ∗
st;j0 =

τ∗
st;j1 = 0.5. (iii) If χst(S) = {(0, k), (1, k)}, then

τ∗
st;0k = τ∗

st;1k = 0.5; and (iv) If {(j, k), (1 − j, 1 −
k)} ⊆ χst(S), then τ∗

st;jk = τ∗
st;1−j,1−k = 0.5.

Any component τ∗
α not specified in these rules is set

to zero. It is easy to see that each case is covered
exactly once (assuming that sets χs(S) and χst(S) are
non-empty). Furthermore, it can be verified that τ ∗ ∈
LOCAL(G), so that it is dual feasible. Now let us
compute the value of this dual feasible point, which is

given by 〈θ̄, τ∗〉. Since θ̄ is a reparameterization of θ̂

(i.e., θ̄ ∼= θ̂), it follows that 〈θ̄, τ∗〉 = 〈θ̂, τ∗〉 (see [6]).

Consider some index α = (s; j) ∈ I. If τ ∗
s;j > 0, then

our construction implies that j ∈ χs(S). By Lemma 1,

this implies that θ̂s;j = 0. Similarly, if for index α =
(st; jk) ∈ I we have τ∗

st;jk > 0, then (j, k) ∈ χst(S) and

θ̂st;jk = 0. Therefore, θ̂ατ∗
α = 0 for any α ∈ I\{const},

so that we have 〈θ̄, τ∗〉 = 〈θ̂, τ∗〉 = θ̂const · 1 =

Φρ(~θ), meaning that the dual value 〈θ̄, τ∗〉 is equal

to the value Φρ(~θ) of a primal feasible solution. By

strong duality, the pair (~θ, τ∗) must be primal-dual
optimal.

Remarks: Among other consequences, Theorem 4
establishes a connection between our results and previ-
ous work on the roof duality approach to binary integer
programs [4, 1]. It involves maximizing a lower bound
on the energy function, for which the dual is known as
the Rhys relaxation. Hammer et al. [4] showed that op-
timal fractional solutions of Rhys relaxation are weakly
persistent, meaning the set of variables with integer
values retain those same values in at least one optimal
solution of the original minimization problem. This
result suggests a close link between the TRW-LP and
roof duality. Indeed, it is possible to show [7] that Rhys
relaxation and the TRW-LP are essentially equivalent.
With this additional equivalence, the connections can
be summarized as follows. On one hand, weak per-
sistency of the Rhys relaxation plus Theorem 4 imply
Theorem 2; on the other hand, Theorems 4 and 2 in
conjunction imply Rhys weak persistency.

5 Experimental results

Our theoretical results in the preceding section show
that for binary problems, any variable uniquely speci-
fied by TRW is guaranteed to be correct (Theorem 2),
and that for submodular problems, the TRW algo-



rithm is guaranteed to specify all variables (Theo-
rem 3). These results suggest that the TRW algo-
rithm should still perform well on near-submodular en-
ergy functions–meaning relatively close to a submodu-
lar problem. Accordingly, this section is devoted to an
experimental investigation of the percentage of vari-
ables correctly determined by TRW, when applied to
energy functions in which the following three parame-
ters are varied: the percentage α of submodular edges,
the problem size N , and the strength of the singleton
potentials (θs) relative to that of the pairwise poten-
tials (θst). Note that this last parameter can be inter-
preted as a type of signal-to-noise ratio (SNR).

We provide experimental results on two types of
graphs: N × N grids with 4-nearest neighbor inter-
actions, and complete graphs on N nodes. In all
cases, we generated single-node potentials as Gaus-
sians θ̄s;0, θ̄s;1 ∼ N (0, 1), independently for each node.
Pairwise potentials were set as θ̄st;00 = θ̄st;00 = 0 and
θ̄st;00 = θ̄st;00 = λst, where the random variable λst ∼
|N (0, σ2)| with probability α, and λst ∼ −|N (0, σ2)|
with probability (1 − α). We applied the sequential
TRW algorithm [6] to each problem, terminating if
the value of the lower bound (7) did not increase for
10 iterations. This criterion is appropriate since the
sequential TRW updates are guaranteed [6] to never

decrease the bound; moreover, if vector ~θ does not
satisfy WTA condition, then the bound is guaranteed
to increase in a finite number of iterations. We used
the condition |θ̂s;0 − θ̂s;1| > 10−6 to determine when
s ∈ V fix. For each triple (α, σ,N), we ran the al-
gorithm on 100 sample problems and report the aver-
age percentage of correctly specified random variables.
Note that there is no need to perform brute force ex-
act computations to make this comparison, since any
variable in V fix is guaranteed to be correctly specified
(by Theorem 2).

Our first set of experiments examines the dependence
of the correct fraction pcor on the potential strength
σ at a fixed value of α. We fixed α = 0.5 for grids
and α = 0 for the complete graphs; note these values
give the worst behaviour for corresponding problems1.
The results are shown in panels (a) and (b) of Figure 2,
where we plot the correct percentage pcor on the verti-
cal axis versus the edge strength σ · d along horizontal
axis, where d is the node degree. As expected, for
small values of σ, the fraction pcor of correct variables
is near 100%; moreover, as shown in panel (b) for com-
plete graphs, the dependence remains approximately
invariant as the graph size increases. In the second
set of experiments, we fixed the size of the graph to
N = 32, and measured the percentage of correct vari-

1The grid is invariant to the change α← 1−α, which is
equivalent to flipping all “odd” nodes of a bipartite graph.

ables pcor as a function of α for different values of σ ·d.
As shown in panels (c) and (d) of Figure 2, if the prob-
lem is near-submodular (i.e., α ≈ 1), then almost all
variables are correctly specified (pcor ≈ 100%).

6 Conclusion

This paper provides several theoretical guarantees on
tree-reweighted (TRW) max-product algorithm as ap-
plied to problems with binary variables. We showed
that TRW message-passing is always successful for
submodular energy functions; moreover, for arbitrary
energy functions, we proved that any fixed point that
satisfies weak tree agreement can be used to spec-
ify a subset of a globally optimum solution. Exper-
imental results show that for certain regimes of near-
submodular functions, the TRW method continues to
determine a relatively high fraction of the optimal so-
lution. While the current paper focused on the binary
case, the TRW method itself applies to arbitrary pair-
wise MRFs. Our current results in their precise form
cannot be extended beyond the binary case (as there
exist counterexamples); however, it should be possible
to prove related results in the more general setting.
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