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Figure 1: Tearing the armadillo: (a) input geometry and illustration of boundary conditions; (b) BEM mesh with maximal principal stress
shown in red; (c) BEM mesh of a generated fracture; (d) high-resolution fracture surface.

Abstract

We present a method for simulating brittle fracture under the as-
sumptions of quasi-static linear elastic fracture mechanics (LEFM).
Using the boundary element method (BEM) and Lagrangian crack-
fronts, we produce highly detailed fracture surfaces. The computa-
tional cost of the BEM is alleviated by using a low-resolution mesh
and interpolating the resulting stress intensity factors when propa-
gating the high-resolution crack-front.

Our system produces physics-based fracture surfaces with high spa-
tial and temporal resolution, taking spatial variation of material
toughness and/or strength into account. It also allows for crack ini-
tiation to be handled separately from crack propagation, which is
not only more reasonable from a physics perspective, but can also
be used to control the simulation.

Separating the resolution of the crack-front from the resolution of
the computational mesh increases the efficiency and therefore the
amount of visual detail on the resulting fracture surfaces. The BEM
also allows us to re-use previously computed blocks of the system
matrix.
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1 Introduction

Computer graphics researchers have developed diverse methods for
fracturing virtual objects. Purely geometric approaches use either
pre-fractured models or pre-defined fracture patterns, while fracture
simulations (including mass-spring systems, finite element meth-
ods, and mesh-less methods) respect the underlying physics of the
fracture process. Unfortunately, these simulation methods become
inefficient if all the detail of the fracture surfaces is present in the
computational model, effectively limiting the visual detail that can
be captured. Adaptive re-meshing (or re-sampling in mesh-less
methods) is typically used to mitigate this limitation. Some meth-
ods also use heuristics to add more visual detail to fracture surfaces
as a post-process, but they do not influence the simulation in any
way.

The standard approach in fracture simulation for computer graphics
is to cut or re-mesh one element at a time as the crack propagates
through the material. This requires small time-steps and is analo-
gous to an Eulerian reference frame as the crack advances through
space. Our approach departs from this traditional viewpoint by
adopting a Lagrangian reference frame for crack propagation, as
illustrated in Fig. 2. This new point of view allows us to utilize
techniques from front tracking, improves the achievable resolution
of fracture surfaces, and still treats the underlying physics with ac-
ceptable accuracy. We combine a boundary element method (BEM)
on a coarse computational mesh with a high-resolution crack propa-
gation scheme, resulting in a fast and efficient framework for brittle
fracture. Our results show that this method is capable of produc-
ing detailed, realistic fracture surfaces while avoiding complicated
mesh manipulations.

Furthermore, a common artifact in computer graphics simulations
is artificial shattering, which results from the use of stress-based
fracture criteria. We introduce a new method based on linear elastic
fracture mechanics (LEFM) that avoids this problem altogether by
treating crack initiation and propagation separately. Our method
utilizes both strength and toughness in the physically correct way,
where crack initiation depends on stress, but crack propagation is
governed by stress intensity factors.

The main contributions of our method are:

• an efficient symmetric Galerkin BEM implementation for
quasi-static brittle fracture simulation, where each entry in the
system matrix is computed only once;



(a) (b)

Figure 2: Standard methods propagate fractures by re-meshing
(a), while our approach treats the crack-front as a Lagrangian flow
problem (b).

• fracture criteria treating crack initiation and propagation phys-
ically correctly in the context of LEFM;

• an interpolation scheme that allows for much more visual de-
tail of fractures than present in the computational mesh; and

• a new, fast, and simple treatment of spatially varying tough-
ness during crack propagation yielding realistic fracture pat-
terns.

As far as we are aware, this is also the first time a BEM is used for
fracture simulation in computer graphics.

2 Related work

In this section we summarize previous work on handling fractures
in solid objects, both in computer graphics as well as mechanical
engineering.

Purely geometric methods such as [Su et al. 2009; Müller et al.
2013] are popular in computer graphics, since they are typically
much faster than any simulation. Fractures are either pre-defined
during modeling or generated by applying a pre-defined fracture
pattern and then updating the topology of the object. Some methods
also combine physics-based deformation models with geometric
fracturing [Iben and O’Brien 2006; Glondu et al. 2012; Schvartz-
man and Otaduy 2014]. Furthermore, additional visual detail can
be generated for coarse simulation results by modifying the fracture
surfaces on a smaller scale [Chen et al. 2014]. For the remainder
of this discussion we focus on continuum mechanical models of
fracture.

Physics-based fracture simulations typically consist of three steps:
first deformations and/or internal forces (stresses) are computed,
then some fracture criterion is evaluated, and finally the geometric
model is updated to account for newly formed cracks.

2.1 Deformation

There is a wide range of methods available for the deformation step,
such as mass-spring networks [Norton et al. 1991; Hirota et al.
1998; Hirota et al. 2000; Smith et al. 2001; Levine et al. 2014],
finite element methods (FEM) [O’Brien and Hodgins 1999; Müller
et al. 2001; O’Brien et al. 2002; Bao et al. 2007; Wicke et al.
2010; Zheng and James 2010; Koschier et al. 2014] and extended
FEM (X-FEM) [Moës et al. 2002; Gravouil et al. 2002; Abdelaziz
and Hamouine 2008; Kaufmann et al. 2009; Mousavi et al. 2011],
mesh-less or particle-based methods [Pauly et al. 2005] such as the
material point method (MPM) [Stomakhin et al. 2013; Stomakhin
et al. 2014], and boundary element methods (BEM) [Aliabadi 1997;
James and Pai 1999; Wilde and Aliabadi 1999; Frangi et al. 2002;
Sutradhar et al. 2008; Kielhorn 2009; Messner and Schanz 2010;
Sauter and Schwab 2011; Keeler and Bridson 2014].

While mass-spring systems discretize deformable objects as a col-
lection of point-masses with forces between them (usually confined
to a small neighborhood of each point), all other methods listed
above are based on continuum mechanics. The main differences be-
tween FEM, X-FEM, MPM, and BEM can be characterized by the
distribution of degrees of freedom and the resulting approximation
spaces. Degrees of freedom in FEM and X-FEM are stored on (the
vertices of) a volumetric mesh, spanning a piecewise polynomial
function space (FEM), which can be enriched by additional, spe-
cialized basis functions (X-FEM). The MPM usually stores mass
and velocity on particles, while forces are computed on a regular
grid, and data is interpolated between the grid and particles.

The degrees of freedom in a BEM, however, are stored on a sur-
face mesh and the boundary integral form of the governing equa-
tions is used instead of (volumetric) partial differential equations.
While this limits the possibility to treat spatially varying elastic-
ity parameters, it reduces the required number of degrees of free-
dom. Furthermore, only the boundary data is approximated, but the
governing equations within the domain are satisfied exactly using a
fundamental solution (also called Green’s function). In contrast, a
FEM approximates the solution in a (typically) piecewise polyno-
mial space.

2.2 Fracture criteria

The second step of the fracture simulation is evaluating the frac-
ture criterion, i.e. deciding whether a material fails at a certain
location under a given load. Terzopoulos and Fleischer [1988] use
a maximal strain threshold, while O’Brien and colleagues [1999;
2002] use a stress-based separation tensor at the nodes of a tetra-
hedral FEM mesh. This method has been combined with dynamic
mesh improvement [Wicke et al. 2010], and also modified by Pfaff
et al. [2014] to fracture thin-plate triangle meshes. Koschier et
al. [2014] use a similar maximal tensile stress criterion to initiate
cracks, and then propagate them until they reach the surface of the
object. They acknowledge, however, that cracks should terminate
based on the energy dissipated in the process, as done by Glondu et
al. [2013].

One important distinction to make is the difference between the ma-
terial parameters strength and toughness. Strength describes how
much load is required to start a fracture, whereas toughness deter-
mines whether an existing crack will (continue to) propagate [Fre-
und 1998; Rabczuk 2013]. For example, a strong but fragile speci-
men will withstand a large amount of load as long as it contains no
cracks, but once it starts to fracture, cracks will quickly cut com-
pletely through it. On the other hand, in a weak but tough specimen
small cracks will appear at relatively low loads, but only few of
them will propagate (where the load is sufficiently high). Our ex-
amples in §8 demonstrate the desired behavior; see also Fig. 10b. A
similar concept has also been used in [Smith et al. 2001].

Consequently, working only with maximal stress criteria for brittle
fractures can lead to artificial shattering, as many nodes in a high-
stress region may fulfill the criterion at the same time. Pfaff et
al. [2014] propose a local update procedure to mitigate this issue,
while Koschier et al. [2014] first find such regions and then pick
only the point of maximal stress within each region to initiate a
fracture.

We believe that the proper way to deal with brittle fractures is to
treat crack initiation and propagation separately. Even nominally
brittle materials exhibit a very small plastic zone around crack-
fronts, which is not captured by the LEFM model [Gross and Seelig
2011]. Consequently, stress is not the proper measure for crack
propagation, as it is singular at the crack-front. We use stress inten-
sity factors instead, which describe the magnitude of the singular



stress field in the vicinity of crack-fronts [Freund 1998].

2.3 Geometry update

The final step of the fracture simulation is to update the (dis-
cretized) object to include the newly added cracks. In mass-spring
or particle-based systems this is usually done very efficiently by re-
moving interactions between mass-points/particles. Fractures are
included in X-FEM by modifying the approximation space with
discontinuous enrichment functions [Moës et al. 2002; Gravouil
et al. 2002; Abdelaziz and Hamouine 2008; Mousavi et al. 2011],
while this is also reasonably efficient, it does complicate the in-
tegration of the elements’ stiffness matrices. For FEM and BEM
adding fracture surfaces requires modification of the mesh. This
can be problematic for FEM, since cutting elements (as done in
[O’Brien and Hodgins 1999; O’Brien et al. 2002; Wicke et al.
2010; Pfaff et al. 2014]) may cause slivers, and demand further
mesh-improvement. A more stable approach is to duplicate ele-
ments rather than cut them [Molino et al. 2004], but this may cause
undesirable changes to the mass-distribution around fracture sur-
faces; Wojtan and Turk [2008] propose a sub-element accurate mass
computation and Nesme et al. [2009] describe how to handle sub-
element accurate stiffness.

Since a BEM deals only with a surface mesh, adding fracture ge-
ometry is much more straightforward. A “DualBEM” approach re-
quires both sides of a crack to be represented in the mesh [Portela
et al. 1992; Wilde and Aliabadi 1999]. This means that fractures
need to be connected to existing surfaces where they meet. How-
ever, when reducing the problem to computing only crack-opening
displacements (instead of absolute displacements of both sides of
the crack), LEFM problems can be solved using a single triangle-
sheet per crack [Frangi et al. 2002].

Our method builds on the BEM formulation presented by Frangi et
al. [2002], who have shown that it accurately computes stress inten-
sity factors (SIF) in fractured objects. While it is known that SIF are
underestimated near boundaries (which would not happen in a Du-
alBEM [Wilde and Aliabadi 1999]), it has the advantage that adding
new fracture surfaces can be done simply by inserting triangles into
the mesh; no changes need to be made to previously existing ele-
ments. This allows us to re-use the system matrix from the previous
time-step and add new blocks representing the most recently added
triangles. We present more details of this method in §4. While
Frangi et al. [2002] only consider static fracture configurations,
our algorithm also computes dynamic crack propagation, integrates
spatially-varying toughness, and generates high-resolution fracture
surfaces.

3 Overview

In this section we outline our fracture simulation method, before
providing details in the following sections. Starting from a given
(possibly highly detailed) surface mesh, we first convert it to an im-
plicit surface for the reasons discussed in §7 and construct a coarse
triangle mesh for the BEM. In some of our examples we start di-
rectly with a coarse mesh.

We then apply given boundary conditions and compute surface dis-
placements and stresses on the coarse mesh (§4). Based on the
surface stresses, we start new cracks if the conditions given in §5.1
are met. Any new crack will be added to both the coarse mesh and
the high-resolution implicit surface.

Whenever new fracture surface elements are added to the
coarse mesh, we update the BEM and obtain stress in-
tensities at the crack-front (§4.1). Our crack propaga-

tion algorithm then proceeds as illustrated in the inset fig-
ure: (a) interpolate stress intensities from the BEM mesh to
crack-front markers (§6.1); (b) propagate the markers (§5.2);

(a)

(b)

(c)

(c) update the BEM mesh and re-
peat. We also consider spatially vary-
ing toughness during propagation, as de-
scribed in §6.2. Crack propagation stops
if the crack-front intersects another sur-
face, or the stress intensity becomes too
low. The simulation terminates if either
no new fracture surfaces have been gen-
erated, or after a user-specified number
of time-steps.

Finally, we find disconnected geometry components using the im-
plicit surface and convert them to high-resolution meshes for ren-
dering. In order to produce a world-space visualization, we also
interpolate displacements from the BEM solution to the high-
resolution meshes (§7). Results produced with our method are
shown in §8.

4 Boundary Element Method

In the following paragraphs we briefly summarize the derivation
of the symmetric Galerkin boundary element method (SGBEM)
for linear elasticity problems. We follow the notation of Kiel-
horn [2009], to which we refer the interested reader for further de-
tails.

We start with the equations of linear elastostatics in the absence of
body forces: the elastostatic equilibrium of a solid object is then
∇ · σ = 0. Stress σ is related to strain ε by an isotropic consti-
tutive model σ := 2µε+ λ tr(ε)I with constant Lamé parameters
(µ, λ) and linearized strain ε := (∇u + ∇u>)/2. Here u(x) is
the displacement vector field, mapping a material-space coordinate
x to a world-space coordinate x + u(x).

This problem can be written as a boundary integral equation (1),
where Γ = ∂Ω denotes the boundary of the computational domain.

uΓ(x) = Trx

∫
Γ

qΓ(y)U(y,x)dsy

− Trx

∫
Γ

uΓ(y)(TyU)>(y,x)dsy

(1)

Here uΓ are boundary displacements and qΓ are boundary tractions
(i.e. forces per surface area). The boundary trace operator Tr “re-
stricts” a function from Ω to Γ (not to be confused with the trace
of a matrix, tr), while the traction operator T acts as a generalized
normal derivative. Finally, U is the fundamental solution such that:

u(y) =

∫
Ω

(LxU(y,x))u(x)dx ∀y ∈ Ω

L := ((λ+ µ)∇∇·) + µ∇2.

Intuitively, the fundamental solution (or Green’s function) U(y,x)
gives the displacement observed at point y due to a concentrated
point load at x for an infinite body. Applying the boundary trac-
tion operator to Eq. (1) yields the boundary integral equation for
tractions:

qΓ(x) = Tx
∫

Γ

qΓ(y)U(y,x)dsy

− Tx
∫

Γ

uΓ(y)(TyU)>(y,x)dsy.

(2)

Depending on the type of the given boundary conditions, the
SGBEM applies Eq. (1) on surfaces where displacements are



known, and Eq. (2) where tractions are known [Frangi et al. 2002;
Sutradhar et al. 2008; Kielhorn 2009]. We use piecewise linear
and piecewise constant approximations for displacements and trac-
tions respectively. The system-matrix for this linear boundary inte-
gral problem is assembled by regularization and quadrature of the
4 integral operators in Eq. (1) and (2), see also Eq. (12). Separat-
ing known and unknown boundary data yields the following linear
block-matrix system, which is the starting point for our implemen-
tation; see Eq. (5.16) in [Kielhorn 2009]:[

V −K
K> D

] [
q
u

]
=

[
fD
fN

]
. (3)

Here u and q are unknown boundary displacements and tractions
respectively, while the right hand side is assembled using the known
Dirichlet and Neumann boundary data. The first and second row in
Eq. (3) represent the discretized versions of Eq. (1) and (2) respec-
tively. The equations for each block are given in the Appendix. We
note that the first block, V, is symmetric positive definite, and the
system can be solved using Schur complements; see Eq. (5.18) in
[Kielhorn 2009] for details. The whole system-matrix, however, is
dense. Please also note that the required regularization and quadra-
ture techniques have been omitted here for brevity and can be found
in great detail in the book by Sauter and Schwab [2011]; these are
implemented in the HyENA library, available under LGPL [HyENA
2013], which we use in our implementation.

4.1 SGBEM for quasi-static fracture dynamics

Assuming an unfractured object, proper boundary conditions, and a
triangle mesh such that we can assemble and solve Eq. (3), we de-
scribe how to add a crack to this system in the following paragraphs.
Extending an existing crack follows the same principle. Since the
crack relieves internal stress, the crack faces are traction-free in the
quasi-static equilibrium.

In material-space, the crack has two coincident faces, Γ+
c and Γ−c ,

with opposite surface normals and unknown displacements u+ and
u−. The crack-front is the common bounding curve of these faces.
However, treating these coincident surfaces when formulating a
BEM is challenging due to the singularities of the fundamental so-
lution. Furthermore, stress is singular at the crack-front.

There are two methods available to resolve this issue. The
DualBEM [Portela et al. 1992; Wilde and Aliabadi 1999] uses
Eq. (1) on one of the fracture’s faces, and Eq. (2) on the other. This
method, however, requires careful treatment of integrations over co-
incident elements, as well as special “crack-tip elements” to handle
the singular stress field.

On the other hand, the SGBEM formulation of Frangi et al. [2002]
reduces the system by solving for the crack-opening displacement
∆u := u+ − u− instead of both u+ and u−. Consequently, the
fracture can be represented by a single sheet of triangles. On this
surface, Eq. (2) is applied since we have zero traction boundary
conditions. The reduced system is V −K −Kc

K> D Dc

K>c D>c Dcc

 q
u

∆u

 =

 fD
fN
0

 . (4)

To resolve the issue of the stress-singularity at the crack-front, we
simply require that the opening displacement is zero at the crack-
front and use a piecewise constant approximation of tractions. This
means that there is no unknown data stored directly at the crack-
front.

Whenever we add new fracture elements, the blocks Kc, Dc and
Dcc, as well as the unknown vector ∆u, grow accordingly, but

none of the previously computed parts of these blocks need to be
changed.

A disadvantage of this formulation is that fractures are never
topologically connected to the surface of the object, hence
displacements—and consequently stress intensity factors (SIF)—
will be under-estimated for crack-fronts in the vicinity of the ob-
ject’s surface. Please refer to [Frangi et al. 2002] for quantitative
comparisons. Intuitively, this slightly reduces crack speeds near the
boundary. We believe, however, that this problem is outweighed by
the simplicity of the formulation, since it does not require modify-
ing any existing elements when adding new fractures. This choice
is also very efficient, because the number of unknowns on crack
surfaces is reduced by half compared to the DualBEM. We have im-
plemented this method using the HyENA [2013] library, with minor
modifications in order to assemble the new matrix blocks Kc, Dc

and Dcc.

Solving Eq. (4) immediately provides crack-opening displacements
(COD), ∆u, which lends itself to fast evaluation of stress intensity
factors (SIF) via the displacement correlation technique, cf. Eq.
(25) in [Ingraffea and Wawrzynek 2003]:

KI = µ
√

2π
∆uI√

r(2− 2ν)
,

KII = µ
√

2π
∆uII√
r(2− 2ν)

,

KIII = µ
√
π

∆uIII√
2r

.

(5)

For every crack-front edge in the BEM mesh we choose the interior
node of the triangle containing this edge as the correlation point.

n1

n2

n3

∆u

r

The COD, ∆u, is evaluated at the
correlation point and projected onto
the local orthonormal coordinate system
(n1,n2,n3) of the crack-front, yield-
ing ∆uI, ∆uII, and ∆uIII. The stress-
intensities (KI,KII,KIII) are evaluated
according to Eq. (5), where ν is Pois-
son’s ratio and r is the distance from the crack-front to the cor-
relation point, as illustrated in the inset figure. Finally, we average
the resulting SIF from the edges to the crack-front nodes.

We note that there exist more accurate methods for extracting SIF
from simulation results, such as path-independent integrals [In-
graffea and Wawrzynek 2003], but displacement correlation is the
fastest and sufficiently accurate for our purposes.

5 Fracture dynamics

Having described how we compute quasi-static stress intensities at
crack-fronts in the previous section, we now present our method
for simulating dynamically growing fractures. First, we discuss
crack initiation based on surface stresses, and then we introduce
3D crack-front motion. Later on, in §6, we discuss how we in-
crease the fracture resolution and our treatment of spatially varying
toughness.

5.1 Crack initiation

It is possible to initiate cracks anywhere inside the object, based on
any criterion due to interior stress, surface stress, or at any location
specified by the user. Unless otherwise stated we choose to use sur-
face stresses for efficiency, since interior evaluations are somewhat
costly in a BEM.

We start a new crack if the following conditions hold:



(a) an element’s principal stress exceeds the local material
strength,

(b) this element has not initiated a crack before,

(c) this element is farther than the average BEM edge-length from
any other crack-front, and

(d) the (user-specified) limit for the maximum number of cracks in
the simulation has not been reached yet.

Condition (a) is our main criterion for crack initiation, and we use
the maximal principal stress to account for tensile fracture, as well
as the minimal principal stress for compressive fracture. The ele-
ment where stress exceeds the local strength the most will be frac-
tured first.

Since we do not cut any elements when a crack meets another sur-
face, we keep a list of fractured elements to evaluate condition (b),
so any element can initiate at most one crack. Otherwise we risk
creating overlapping elements which introduces untreated singular-
ities in the BEM integrals.

We use conditions (c) and (d) to increase the efficiency of our
method. The intuition for (c) is that starting a crack in the vicinity
of another crack-front will very likely become redundant as soon
as that crack-front propagates. We find that condition (d) is also an
easy way to allow the user some control over the simulation.

In order to evaluate condition (a), we follow the principal stress
computation used for co-rotational FEM [Irving et al. 2004]. This
can be done for every triangle in the BEM mesh by conceptually
extending it to a tetrahedron in the normal direction, following §3
in [Sumner and Popović 2004]. We then compute a SVD of the
per-element deformation gradient F = UΣV>, and evaluate the
principal stresses based on the strain measure (Σ− I). Evaluating
condition (a) is now straightforward, using the maximal and mini-
mal principal stresses and comparing to the tensile and compressive
strength respectively. Strength is evaluated at the centroid of the tri-
angle in question.

When starting a new crack (i.e. when all four conditions are met),
we need two unit-vectors to describe its orientation: the fracture
surface normal n1, and the “forward” direction n2 along the frac-
ture surface (see inset figure below). The former is given by the
orientation of the maximal/minimal principal stress, which is found
in the corresponding column of V and we choose the inward nor-
mal of the triangle for the latter (i.e. the crack is set to propagate
away from the surface and into the object).

5.2 Crack propagation

When new fracture elements are added to the BEM mesh,
we update the blocks Kc, Dc, and Dcc of the system ma-
trix in Eq. (4) (also see Appendix) and compute stress in-
tensities for all nodes on the crack-front using Eq. (5).

n1

n2

n3

x

(v, θ)

We then use our crack propagation cri-
terion, Eq. (7), to determine whether
the crack propagates at a point x,
where stress intensities (KI,KII,KIII)
are given in the local coordinate system
(n1,n2,n3), as illustrated in the inset
figure. If the crack propagates, we de-
termine the propagation speed v(x) and
(out-of-plane) direction θ(x) according to Eq. (8) and (10) respec-
tively. We discuss our treatment of spatially varying toughness in
§6.2.

The three loading modes are defined following [Freund 1998] and
illustrated in Fig. 3; I: “opening” along the surface normal n1, II:

“sliding” along the crack-front normal n2, and III: “tearing” along
the crack-front tangent n3.

Intuitively we expect that a crack propagates if the strain energy re-
lease rate G exceeds the energy required to create the new fracture
surfaces, described by the material’s surface energy γ: G ≥ 2γ.
(The factor of 2 accounts for the fact that the crack creates two sur-
faces; see [Freund 1998] for details.) Furthermore, a homogeneous
material under pure mode-I tension should exhibit a planar fracture
(orthogonal to n1, i.e. θ = 0), while mode-II loading should cause
the crack to (smoothly) turn away from that plane. Finally, mode-
III loading both contributes to the forward propagation of the crack,
but also causes the crack-front to twist around n2; see illustration in
Fig. 3, as well as results in Fig. 4. We found that we do not need to
handle this twisting explicitly, as it will happen automatically due
to varying results for KII along the crack-front if mode-III loading
is present (see Fig. 4). This means that it is sufficient to compute
only v(x) and θ(x) during crack propagation. We terminate crack
propagation when the crack-front meets a surface (either another
fracture or the object’s boundary), which is implemented using in-
tersection tests on an implicit surface representation, as described
in §7.

Our fracture criterion can then be written as follows: the strain en-
ergy release rate is given by Anderson [2005] as:

G =
1− ν2

E
(K2

I +K2
II) +

1 + ν

E
K2

III, (6)

where E is Young’s modulus and ν is Poisson’s ratio. Using the
material’s toughness K2

c := 2γE/(1 − ν2) and introducing the
effective stress intensity K2

eff := K2
I + K2

II + K2
III/(1 − ν), the

crack propagates if
Keff ≥ Kc. (7)

To find the propagation speed, we use a linear approximation for the
ratio of static and dynamic SIF (see Eq. (7.4.5) in [Freund 1998]):

v ≈ cR
(
1−K2

c /K
2
eff
)
, (8)

where cR is the Rayleigh wave speed, which is approximately
cR ≈ 0.9

√
µ/ρ, where ρ is the material’s density [Gross and Seelig

2011].

Finally we compute θ similar to Patricio and Mattheij [2007], who
describe the propagation direction for 2D cases. Extending their
work to 3D, we group theKI andKIII terms inKeff together, which
drive the crack forward, while KII causes the crack to turn. Using
K2

I,III := K2
I +K2

III/(1− ν) instead of KI in Eq. (32) and (34) in
[Patricio and Mattheij 2007], we obtain the stress intensity acting
across the propagation direction θ:

Kθ = KI,III cos3(θ/2)− 3KII sin(θ/2)cos2(θ/2), (9)

which has the maximum

θ∗ = 2 atan
[(
KI,III − (KI,III

2 + 8KII
2)1/2

)
/(4KII)

]
(10)

I II III

Figure 3: Loading modes (arrows) and expected crack propaga-
tion behavior (shaded).



(i) (I)

(II) (III)

Figure 4: Initial BEM mesh (i) and results (I–III) for a cube con-
taining a planar edge-crack under mode I, II, and III loading.

if KII 6= 0, otherwise θ∗ = 0. In a homogeneous material, the
crack propagates in the direction θ∗; in §6.2 we extend this to ac-
count for spatial variations of the material’s toughness. Please note
that the propagation speed in Eq. (8) is limited by the Rayleigh wave
speed, which makes it straightforward to choose the time-step such
that a maximal distance cannot be exceeded.

6 High-resolution fracture simulation

We could now evaluate the fracture criterion described in §5 at ev-
ery crack-front node in the BEM mesh, advance the crack-front over
a time-step, and then update the BEM by inserting new elements
and growing the system matrix as described in §4.1. However, do-
ing this would result in fracture surfaces that are of the same resolu-
tion as the BEM mesh. Handling a highly detailed fracture this way
would make the BEM prohibitively expensive. In this section, we
describe how we simulate high-resolution crack propagation using
a coarse elasticity solver.

6.1 Homogeneous material

Our goal is to separate the resolution of crack propagation from the
resolution of the underlying elasticity simulation. To this end, we
conceptually subdivide each crack-front edge by placing n equally-
spaced markers on it. Consequently, our fracture surface will have
roughly n-times the resolution of the BEM mesh. We then inter-
polate both the stress intensities and the local coordinate system
linearly over the edge, evaluate the fracture criterion at each of the
markers, and propagate them independently. To achieve high tem-
poral resolution, we use smaller time-steps than the BEM updates
during propagation (called “sub-steps”).

The key point is that the crack propagation criterion is based on
stress intensity factors, which describe the stress field in the imme-
diate vicinity of a crack-front (with respect to its local coordinate
system). The rapid change of stress around the moving crack-front
is therefore captured by applying the SIF at the updated positions of
the crack-front markers in each sub-step. The stress far away from
the crack-front changes much more slowly (both in time and space),
which is accounted for by the BEM update at the end of each full
time-step.

So far, we have increased the resolution of the crack-front mo-
tion, but the generated fracture surface would still show kinks as
θ∗ changes from one full BEM time-step to the next (when us-
ing a forward Euler scheme). This issue could be solved by using
a higher-order time integration, but as recomputing θ∗ requires a
BEM update, it would be expensive to do so.

Intuitively the goal is to have a smooth transition from the previous
propagation direction to the new one after each BEM update. To
this end, we store the previous direction at each crack-front marker
and linearly blend to the new direction over time as we take forward
Euler sub-steps. The number of sub-steps is chosen equal to n, i.e.
the number of markers per edge. We typically choose n in the range
of 10–50 for our examples; see Table 1. This means that we can take
about 10–50 sub-steps before needing to update the BEM solution.

After the sub-steps are integrated, we first apply edge subdivision
and collapse operations to (almost) uniformly sample the high-
resolution crack-front. We then compute a smoothed version of
this curve by averaging the positions of every n markers. Finally,
we add new triangles to the BEM mesh connecting the previous and
the new low-resolution crack-fronts.

6.2 Spatially varying toughness

So far we have considered crack propagation in a linear elastic ho-
mogeneous material. While the BEM inherently limits the ability to
treat materials with spatially varying elasticity properties, we find
that we can produce a number of interesting effects in terms of frac-
ture surfaces by toughness variations only. Note that both strength
and toughness are material parameters that do not affect the BEM,
whereas variations in the elasticity parameters would require ad-
justing the fundamental solution.

The strategy of propagating a fracture strictly according to stress
intensity (along θ∗, Eq. (10)) appropriately yields maximal elastic
energy release in homogeneous materials. Unfortunately, this is not
true for finite time-steps in materials with spatially varying tough-
ness, as more energy can be released by proceeding through weaker
regions (instead of entering tougher regions and stopping earlier).
We introduce new crack propagation rules below to compensate for
this observation.

To model the effects of toughness variation on the crack’s propaga-
tion direction, we use the heuristic that a crack should follow the
negative toughness gradient, i.e. move towards a less tough region
nearby, whenever possible. Note that, just as in §5.2, each marker
on the crack-front may only move in the plane locally orthogonal
to the crack-front.

The effective stress intensity (Kθ) depends on the propaga-
tion direction according to Eq. (9), and we choose the opti-
mum (θ∗), Eq. (10), if the toughness is (locally) homogeneous.

Kθ

θ

Kc

θmin θmax

θ∗

However, if there is a non-zero tough-
ness gradient at a crack-front sample x,
we instead compute an interval of valid
directions using 1D Brent-Dekker root-
finding, such that Kθ ≥ Kc(x) ∀ θ ∈
(θmin, θmax), as shown in the inset fig-
ure. We then project the toughness gra-
dient onto the plane orthogonal to the
crack-front and convert to polar coordinates to find the in-plane
angle of the gradient (θ̃∇). We choose the valid direction θ∇ ∈
(θmin, θmax) closest to the gradient angle θ̃∇.

To avoid numerical artifacts when the toughness gradient is ei-
ther close to zero or almost parallel to the crack-front, the cur-
rent propagation direction is computed as a weighted average
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Figure 5: Comparison of the default (a), §6.2, and alternative
(b, c), §6.3, crack propagation method using a material model with
large elongated (rolled) grains.

θw = wθ∗ + (1− w)θ∇, where the weight is based on the mag-
nitude ‖∇Kc,p‖ of the projected toughness gradient:

w = 1/

(
1 +
‖∇Kc,p‖ d

Kc

)
, (11)

and d is a characteristic length, which we choose to be the average
BEM edge-length, making the weight dimensionless.

6.3 Alternative method for crack propagation

Note that the method described in §6.2 will prioritize smooth direc-
tion changes over producing high-frequency details, making it ro-
bust under both very high or almost zero toughness gradients. We
use this procedure for all of our results, except for Fig. 5(b, c) and
the shattering cube in our video. These two examples follow a more
aggressive alternative strategy described in this section, which can
yield more visual detail under certain conditions, but is also more
prone to creating noticeable artifacts on the fracture surface.

The alternative method proceeds as follows: first, we compute a
smoothly changing direction θ̃∗ ignoring all toughness variations
for each sub-step (as in §6.1). We then linearly interpolate the valid
interval (θ̂min, θ̂max) between the previous and the current full-
step. Finally, we add the direction according to the toughness gra-
dient to find the actual propagation angle θ̃w = wθ̃∗ + (1−w)θ̂∇,
where θ̂∇ is the closest direction to the projected toughness gradi-
ent θ̃∇ contained in the interpolated valid interval (θ̂min, θ̂max). A
comparison of these two methods is shown in Fig. 5.

7 Implementation details

We use OpenVDB [2014] implicit surfaces to store the high-
resolution fractures, as well as the object’s surface, instead of the
low-resolution triangle mesh used in the BEM. Fractures are repre-
sented by cutting away a thin strip of material, whose thickness is
slightly larger than the voxel size, around each crack. This allows
us to store the high resolution surfaces, avoid complicated mesh-
ing operations, and perform intersection tests quickly in order to
determine whether a crack-front has reached another surface.

At the start of a simulation, we perform a pre-computation, starting
with loading either a given BEM mesh, or a high-resolution tri-
angle mesh and building the BEM mesh with quadric-error-based
simplification [Garland and Heckbert 1997], implemented using
VCGlib [2014]. In cases where the high-resolution surface pro-
trudes too far out of the coarse BEM mesh, we slightly offset the
latter in the normal direction. Furthermore, we initialize the im-
plicit surface and assemble the BEM system matrix as in Eq. (3).
Once this pre-computation is done, each time-step consists of the
following steps: compute displacements (§4) and surface stresses,

crack initiation (§5.1), crack propagation using sub-steps (§5.2),
BEM mesh update, and assembly of additional blocks in the BEM
matrix (§4.1), Eq. (4). Updates to the implicit surface occur after
every sub-step for the examples marked with (s) in Table 1 or at the
end of each full-step otherwise.

Once the simulation is complete (either a maximal number of time-
steps has been done, or no new elements have been added to the
BEM), we use a breadth-first-search on the implicit surface to find
separate fragments. We then extract a high-resolution mesh of each
fragment for rendering.

Visualizing displacements. Since the implicit surface is built in
undeformed material-space, and displacements are only computed
on the coarse mesh, we need to interpolate displacements from the
BEM mesh onto the high-resolution mesh in order to produce a
world-space visualization. We first build a coarse OpenVDB grid
storing indices of all triangles in the coarse mesh intersecting each
voxel. We then use this grid to accelerate closest-triangle queries
on the BEM mesh. Note that the displacement field defined by the
object’s boundary displacement (uΓ) and the fundamental solution
is continuous in space. The crack opening displacement (∆u) adds
the discontinuity on fracture surfaces. Both of these contributions
are solved for using Eq. (4) and in combination determine the dis-
placements of both faces of a crack (u+, u−) in the visual mesh.

We first perform an interior evaluation of the continuous part (ucont)
at all fracture surface nodes in the BEM mesh, which can be inter-
preted as the displacement of a crack’s medial axis. For each vertex
in the visual mesh, we then find the closest triangle in the coarse
mesh and perform linear interpolation of the continuous displace-
ment field within that triangle.

If the vertex is in the vicinity of a crack, we first decide to which
face of the crack (Γ+

c or Γ−c ) it corresponds, based on the high-
resolution surface normals. We then interpolate the COD and com-
pute either u+ = ucont + ∆u/2 or u− = ucont −∆u/2. Finally,
we move the vertex to its displaced position.

Animation output. For efficiency reasons, both in terms of run-
time and disk space, we write the complete state of the simulation
only at full time-steps, whereas we write only updates to the im-
plicit surface at sub-steps. In a post-processing pass we then com-
bine the incremental updates since the last full time-step to build
a high-resolution mesh for each of the sub-steps. Displacements
are interpolated piecewise linearly over time between the previous
and following full time-step. Note that brittle crack propagation
is very fast, consequently our time-steps are usually of the order
of milliseconds to microseconds, depending on the stiffness of the
material; see Eq. (8).

8 Results

In this section we present results produced with our method. We
first show some well-known test cases for homogeneous materials
to demonstrate that our method produces fracture surfaces in line
with the theoretical predictions of LEFM. We then show examples
of various material toughness fields and their influence on the frac-
ture surfaces. Finally, we present animations showing both the high
temporal resolution of our fractures, as well as rigid-body anima-
tions of the resulting fragments, also shown in our accompanying
video. These rigid-body dynamics are currently done as a post-
process and are not yet integrated into our simulation framework;
this is an interesting direction for future work. Our images were
rendered using Autodesk Maya R© or ParaView [2014].

Verification test cases. First, we consider a cube containing a
planar edge-crack under mode I, II, and III loading respectively.
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Figure 6: A cube containing a 45◦ inclined penny-shaped crack
is broken under uniform tension: initial BEM mesh (a) and one
fragment of the final result (b). The crack smoothly approaches
the plane orthogonal to the direction of tension, starting from its
prescribed initial configuration.

(a)

(b) (c)

Figure 7: Initial BEM mesh (a) colored by maximal principal
stress and results for the 3-point-bending test of a notched bar. Our
crack initiation method produces 5 fractures (b), but we can restrict
it to a single one (c).

The expected fracture behavior (as described in §5.2 and illustrated
in Fig. 3) is captured by the simulation as shown in Fig. 4.

Next, we consider a cube under uniform tension along the vertical
axis, containing a penny-shaped crack inclined at 45◦ to the direc-
tion of tension. As shown in Fig. 6, the resulting fracture surface is
smooth and approaches the plane orthogonal to the direction of ten-
sion. Our method’s output for this standard test case is qualitatively
very close to the result of Gravouil et al. [2002].

Finally, we reproduce the well-known 3-point-bending test of a
notched bar. In this case there are no fractures in the initial geome-
try. Instead, the notch creates a stress concentration, which causes
cracks to naturally initiate nearby. This test case shows that our
crack initiation method agrees with LEFM theory and experiments.

Please note the small ridges in Fig. 7b, which are formed by in-
dividual cracks propagating parallel to each other and eventually
intersecting. Similar patterns are often found in nature and are
sometimes referred to as “rivers” in the literature (some are also
visible in the photograph of the fracture in Fig. 11b). Fig. 7c also
demonstrates our ability to control the simulation by limiting crack
initiation to a single fracture event.

The 3-point-bending test is also one of the few cases where the limi-
tations of the BEM formulation, discussed in §4.1, become visually
apparent as small ripples close to the bottom surface of the bar. In
that region, COD, and hence SIF are influenced by the nearby sur-

(a) (b)

(c) (d)

Figure 8: Toughness (a) and strength (b) fields used to control the
fracturing of a cube under mode-I tension (c) and the final result
(d). Minimal toughness is shown in white, minimal strength in blue.
The red circle in (c) highlights the location of crack initiation.

face, causing deviations in the crack-front’s path.

Varying strength and toughness. We now demonstrate how the
simulation can be controlled using spatially varying strength and/or
toughness fields. First, we consider a cube under uniform vertical
tension similar to Fig. 6, but without any initial cracks. We then use
the strength field shown in Fig. 8b to bias crack initiation towards
the middle of the cube.

In a homogeneous material, the crack would propagate under mode-
I loading and form a planar surface, similar to the one in Fig. 4b.
However, we use a toughness field, Fig. 8a, to bias crack propa-
gation to a lower, parallel plane. As shown in Fig. 8c and 8d the
fracture starts in the low-strength region and smoothly approaches
the plane of minimal toughness. We limit crack initiation to a single
fracture in order to make the propagation behavior clearly visible.

Having shown that our method produces the expected results in
standard test cases and is controllable in the intended way, we
will proceed with results obtained using toughness fields with more
artistic spatial variation.

Toughness models. While real-world toughness fields may be
very complicated and a lot of time could be spent on accurately
describing them, the goal of this section is to use simple models in
order to achieve realistic looking fracture surfaces.

Our simplest toughness model aims to describe a material compos-
ited of many parallel layers. We choose a maximum and a mini-
mum toughness value and blend between the two using a weight
of the form (cos (k · x + c) + 1)/2 at any point x, where the con-
stant vector k defines both orientation and frequency of the layers.
Even though this is an oversimplification, it produces interesting
results, as shown in Fig. 9: the overall crack orientation as well as
the number of fragments are affected. Furthermore, fine-scale stair-
step patterns are visible on the fracture surfaces, consistent with the
cleavage patterns of layered materials in nature.

Another interesting subject are materials with a granular structure.
Such grains appear on a micron scale in many metals, but they also
appear on larger scales in rock compounds or concrete, for example.
At this point we do not make any assumptions on the scale at which
we run our simulations, as both cases may be of interest and their
respective fracture patterns exhibit many similarities.

We use the freely available tool DREAM3D [2014] to generate a
realistic grain structure. We first generate a surface mesh of the
grain boundaries and then assign a toughness value proportional to
a narrow-band distance function to the grain boundaries. That is,
toughness is minimal at grain boundaries and maximal deep inside
each grain.

Results obtained with granular toughness fields are shown in Fig. 1,
10, 11, and 12. In these examples, perturbations due to varying
toughness propagate with the crack-front, leaving clearly visible



directional patterns called “chevrons” in their wake. Consequently
the propagation direction is discernible in the final fracture surface.
Such chevrons and river lines are a signature of brittle fractures in
nature [Becker and Lampman 2002]. In addition, surface roughness
increases with distance from the initiation site, as expected. To our
knowledge this is the first method in computer graphics to produce
these physically plausible details.

Furthermore, in Fig. 10b we use material parameters of concrete,
which has a relatively high toughness (compared to its strength).
Consequently, we see numerous cracks appearing in the simulation,
but only a few of these propagate and some stop before reaching
another surface. In this example, we chose a slightly transparent
visualization to show this behavior.

We compare our result to a real world image in Fig. 11 for a granular
material with the elastic properties of concrete. Even though scale
and boundary conditions are not matched to the real world example,
similar fracture patterns appear. Finally, Fig. 12 demonstrates that
our method readily handles non-trivial topology.

9 Discussion

In this paper, we have presented a simulation of brittle fracture dy-
namics using a boundary element method. We compute stresses
on surfaces, but we use stress intensities at crack-fronts (where the
stress field is singular). Crack initiation is based on surface stresses
and can be controlled by modifying the material’s strength, whereas
crack propagation is based on stress intensity and controlled by
modifying toughness. This separation allows us to avoid artificial
shattering often seen in purely stress-based fracture simulations; it
also enables us to produce highly detailed fractures due to spatially
varying toughness.

We sample the crack-front at a higher resolution than the BEM
mesh when simulating crack propagation. The path of the prop-
agating crack-front defines the fracture surface. This allows us to
increase the resolution of the fracture surface compared to the BEM
mesh.

Consequently our method is capable of producing highly detailed
results in a reasonably short time on commodity laptop hardware
(see Table 1). While one could quickly add visual detail to coarse
fracture surfaces in a post-processing step, such a process lacks the
realism that our results exhibit, as many brittle fracture patterns

(a)

(b)

Figure 9: The 3-point bending test, using the same parameters as
Fig. 7, except for a layered toughness field oriented horizontally (a)
or vertically (b). This variation affects the number of fragments.

(a) (b)

Figure 10: Results generated with granular toughness fields.
Please note the chevrons indicating the propagation direction.

found in nature arise from the direction of crack propagation; also
the topology of the fragments would not change, as opposed to our
results (see Fig. 9 and our video).

Since our method is based on quasi-static linear elasticity, it is in-
herently inadequate for large displacements and ductile fracture.
However, it is well suited for handling brittle fracture in reason-
ably stiff materials. In such materials, fractures typically propagate
very fast—on the order of 1km/s in PMMA (“acrylic glass”) and
concrete—and hence a high temporal resolution is required to trace
the crack-front. Our sub-stepping scheme avoids the need to update
the BEM solution for every step; instead we take a fixed number of
sub-steps before the update (at the end of the full time-step). Dur-
ing sub-stepping we assume that the stress intensity factors (SIF)
remain constant. These SIF are specified in the crack-front’s lo-
cal coordinate frame, which automatically handles the fact that the
stress field in the vicinity of the crack-front shifts as the front prop-
agates. Contrary to our method, Pfaff et al. [2014] require local
updates to model this effect.

While we choose small time-steps to achieve good visual detail,
our method is fairly stable at lager time-steps. However, using
extremely large time-steps may cause intersecting elements in the
BEM mesh, which means that there are quasi-singular integrals dur-
ing matrix assembly. Furthermore, large time-steps (and therefore
large fracture surface elements) may cause “incomplete cracks”, if
the high-resolution geometry is not sufficiently well represented in
the BEM. Consequently, small gaps would remain in the implicit
surface, connecting two components that should be separate frag-
ments. In our current implementation we remove these artifacts by
eroding the level-set by at most one voxel and then segmenting the
eroded level-set; we undo the erosion once fragments are separated.

(a) (b)

Figure 11: Simulation result (a) vs. photograph of a fracture (b)
for a granular material. Photograph (b) by Michael C. Rygel via
Wikimedia Commons (cropped).



Table 1: Performance overview of our method. Columns: (#tris) initial and final number of triangles in the BEM mesh; (#voxels) dimensions
of the implicit surface’s bounding box in voxel units; (#ts) number of time-steps; (#ss) number of sub-steps; (#ci) max. number of crack
initiations, (u) unlimited, (m) only one manually added crack; (ts) CPU time for initial implicit surface construction; (ta) CPU time for initial
BEM matrix assembly; (tts) average computation time per time-step; (tt) total computation time of the simulation (including I/O and initial
BEM mesh generation); (τ ) total simulated time. All timings are given in seconds and measured on an Intel R© CoreTMi5 2.6GHz dual-core
HT CPU. Examples marked with (s) generate sub-step output for slow motion animations.

Example #trisi #trisf #voxels (x y z) #ts #ss #ci ts ta tts tt τ

1 Armadillo lay. (video) (s) 1000 1128 429 510 391 5 16 u 6.02 8.91 4.57 40.29 2.8E-5
2 Armadillo grains (Fig. 1) 1000 1845 641 763 583 12 15 6 10.07 8.52 5.79 92.35 4.1E-5
3 Armadillo split (video) 1000 1160 641 763 583 9 50 m 10.07 7.76 3.00 49.04 1.0E-4
4 Bunny ears (video) 900 1084 785 778 609 7 25 u 8.80 6.09 2.84 38.53 1.8E-5
5 Bunny fragile (video) 1000 5380 318 314 247 27 14 12 3.35 7.69 31.94 874.43 2.1E-4
6 Bunny grains (video) 1000 2680 318 314 247 17 20 6 2.18 7.00 11.61 207.35 1.9E-4
7 Bunny smash (video) (s) 1000 2228 318 314 247 18 20 6 2.25 6.96 16.73 311.21 2.0E-4
8 Column (video) 1000 4613 183 617 181 28 12 17 2.25 19.98 20.15 590.62 3.2E-3
9 Cube 45◦ crack (Fig. 6) (s) 244 852 505 505 505 10 30 m 5.10 1.00 9.03 96.42 6.7E-4

10 Cube concrete (Fig. 10b) 120 1890 339 339 339 24 33 u 2.73 0.68 7.23 177.00 1.3E-3
10 Cube shatter (video) 120 2421 233 233 233 12 41 40 1.22 0.63 22.46 271.32 1.1E-3
11 Cube controlled (Fig. 8) 120 391 205 205 205 12 20 1 0.73 0.84 0.75 10.60 1.4E-3
12 Cube mode I (Fig. 4I) 312 424 339 339 339 6 50 m 3.05 1.64 1.64 14.52 1.0E-3
12 Cube mode II (Fig. 4II) 312 430 339 339 339 6 50 m 2.92 1.39 1.44 12.96 1.0E-3
12 Cube mode III (Fig. 4III) 312 459 339 339 339 7 50 m 2.99 1.52 1.58 15.56 1.2E-3
13 Horses statue (Fig. 12) 1000 3134 419 349 149 39 20 u 2.34 8.94 17.48 695.00 1.1E-3
14 Notched bar (Fig. 7b) 416 943 1005 205 255 11 20 u 3.38 1.94 2.97 37.98 5.0E-5
14 N. bar, 1 crack (Fig. 7c) 416 764 1005 205 255 18 20 1 3.39 1.82 1.35 29.51 8.1E-5
15 N. bar lay. horiz. (Fig. 9a) 416 691 1005 205 255 8 30 3 3.49 1.92 2.32 23.94 5.4E-5
15 N. bar lay. vert. (Fig. 9b) 416 1212 1005 205 255 12 30 3 3.28 1.79 3.93 52.25 8.1E-5
16 N. bar grains (Fig. 10a) 416 1043 1005 205 255 13 20 5 3.58 1.87 3.63 52.69 5.9E-5

(a) (b)

Figure 12: Initial BEM mesh (a) and resulting fragments (b) of a
statue dropped on the floor.

Finally, we would like to point out some interesting directions for
future work. The scaling of the BEM can be improved by using fast
multi-pole methods or adaptive cross approximation. One could
also consider using a time-domain BEM [Messner and Schanz
2010]. While we emphasize that we do not need to change exist-
ing elements during our fracture simulation, it could be beneficial
to simplify the mesh of a fracture surface once the crack-front has
moved on, keeping the number of degrees of freedom as low as
possible.

While it is difficult to directly compare to volumetric finite element
methods, our experiments showed that a single FEM based elasto-
static solution for the edge-cracked cube example in Fig. 4i takes
about 0.2s with an adaptive mesh resolution similar to our BEM
mesh. (These times were obtained with the open source code at
http://elmerfem.org.) Our solution (Fig. 4I) takes 300 sub-
steps in 14.5s (on the same machine; see Table 1), which amortizes
the BEM cost to 0.05s per sub-step. While this comparison is by
no means exhaustive, it indicates that our approach is a promising
alternative to volumetric FEM.

To summarize, we have presented a new technique for simulat-
ing brittle fracture based on boundary elements and Lagrangian
crack-front propagation. We have also provided the first method
in computer graphics for computing fractures in the presence of
high-resolution material toughness variations. Because it focuses
the computational effort directly on the high-resolution crack-front
geometry, our method is capable of efficiently generating extremely
detailed and physically plausible fracture patterns.
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Appendix

The entries of the system matrix blocks in Eq. (3) are defined as
follows, cf. Eq. (5.17) in [Kielhorn 2009]:

Vi,k =

∫
Γ

ϕi(x)

∫
Γ

U(y − x)ϕk(y)dsydsx

Ki,l =

∫
Γ

ϕi(x)

∫
Γ

(TyU)>(y − x)ψl(y)dsydsx

Dj,k =

∫
Γ

ψj(x)Tx
∫

Γ

(TyU)>(y − x)ψl(y)dsydsx.

(12)

Table 2: Material parameters used in our examples: Young’s mod-
ulus (E), Poisson’s ratio (ν), density (ρ), tensile strength (Sc), and
toughness (Kc). Refer to Table 1 for the examples’ numbering.
Strength is omitted for examples where crack initiation has been
disabled. Please note that the visual appearance of the results de-
pends not only on the magnitude of toughness variation, but also
on its spatial frequency. (*) Strength varies by +/-82% in the con-
trolled cube example (#11).

# E ν ρ UTS Kc

1 3.1E+9 0.327 1200 7.6E+7 1.3E+6 +/-23%
2 3.1E+9 0.327 1200 7.6E+7 1.0E+6 +90%
3 3.1E+9 0.327 1200 7.6E+7 1.0E+6 +10%
4 2.5E+10 0.2 2300 3.0E+6 8.0E+5 +/-63%
5 3.1E+9 0.327 1200 7.6E+7 1.0E+4
6 3.1E+9 0.327 1200 7.6E+7 5.0E+5 +80%
7 3.1E+9 0.327 1200 7.6E+7 1.0E+6
8 3.1E+9 0.327 1200 7.6E+7 1.0E+4 +20%
9 3.1E+9 0.3 1200 - 1.0E+4

10 2.5E+10 0.2 2300 3.0E+6 5.0E+5 +10%
11 3.1E+9 0.327 1200 4,2E+7* 1.3E+6 +/-60%
12 3.1E+9 0.327 1200 - 1.0E+6
13 3.1E+9 0.327 1200 7.6E+7 1.0E+5 +/-10%
14 3.1E+9 0.327 1200 2.8E+8 1.0E+6
15 3.1E+9 0.327 1200 7.6E+7 2.6E+4 +/-96%
16 3.1E+9 0.327 1200 7.6E+7 1.0E+6 +/-10%

We use piecewise-linear shape functions, ψj , for boundary dis-
placements and piecewise-constant shape functions, ϕi, for bound-
ary tractions. Note that these shape-functions have compact support
(i.e. each is non-zero only in a small area), hence the integrals need
to be evaluated only over a small patch of the surface, analogous to
a Galerkin FEM discretization.

The additional blocks in Eq. (4) are defined in the same way, except
that the inner integrals in Kc and Dc are evaluated on fractures
rather than regular surfaces. Similarly both integrals in Dcc are
evaluated on fracture surfaces. All integrals are evaluated numeri-
cally based on Gaussian quadrature, as implemented in the HyENA
library. The quadrature order oq depends on the distance ||y − x||:
oq = 2 for all points that are further than five times the size of the
element containing x, oq = 3 if the distance is between five and
one element sizes, and oq = 4 for all points that are closer than the
element size.

The right hand side of Eq. (3) is assembled using the known per-
node displacements gD and known per-element tractions gN as
follows:

fDi =

∫
Γ

ϕi(x)

[
1

2
ψl(x)gDl +

∫
Γ

(TyU)>(y − x)ψl(y)gDldsy

−
∫

Γ

U(y − x)ϕk(y)gNkdsy

]
dsx (13)

and

fNj =

∫
Γ

ψj(x)

[
1

2
ϕk(x)gNk +

∫
Γ

(TyU)(y − x)ϕk(y)gNkdsy

−TX
∫

Γ

(TyU)>(y − x)ψl(y)gDldsy

]
dsx. (14)
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