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Introduction

Let p ∈ N denote a prime number and q denote a power of p. This notation will be used
throughout this dissertation.

The zeta function—generating function of point-counts

A fundamental and natural problem in number theory is finding integer solutions to a system of
polynomial equations. We can reduce the problem modulo q and look at the solutions over the
finite field Fq. The solutions can be viewed as points in an algebraic variety X over Fq. To study
a sequence Ns := #X(Fqs), the number of points on X in field extensions Fqs , we can look at
the zeta function of X. The (local) zeta function is defined as a generating function packaging
the point-counts Ns on X:

Z(T ) := exp

(
∞∑
s=1

NsT
s

s

)
.

Weil conjectures—properties of the zeta function

In 1949, Weil conjectured [Wei49] that for a smooth variety of dimension n over Fq, the following
hold:

(1). (Rationality) Z(T ) is a rational function;

(2). (Functional equation) Z
(

1
qnU

)
= ±qnχ/2TZ(T ), where χ is the Euler-Poincaré character-

istic of X;

(3). (Riemann hypothesis) Z(T ) = P1(T )P3(T )...P2n−1(T )
P0(T )P2(T )...P2n(T )

, with P0(T ) = 1− T , P2n(T ) = 1− qnT
and for 1 ≤ h ≤ 2n − 1, Ph(T ) =

∏Bh
i=1(1 − αhiT ) where αhi are algebraic integers of

absolute value qh/2 and Bh are called Betti numbers which satisfy χ =
∑

h(−1)hBh.

Earlier in 1948, Weil proved the conjectures for curves [Wei48a] and for abelian varieties [Wei48b].
The Weil conjectures give insight in understanding the points in a variety as they connect the
geometry over finite fields to topology.

Proving Weil conjectures—cohomology and Dwork’s p-adic method

In 1960, Dwork proved the first of the Weil conjectures [Dwo60], the rationality of the zeta
function, using p-adic analysis. Instead of the usual real numbers, the p-adic numbers is a

v



vi INTRODUCTION

different completion of the rational numbers, giving the field distinctive properties that facilitated
the proof.

Before Dwork, it was thought that some cohomology theory would be the key in proving
the Weil conjectures. The idea was that X(Fqs) are fixed points of the qs-Frobenius over the
algebraic closure of Fq, so the Lefschetz fixed point formula for a suitable cohomology would
allow us to find the numbers #X(Fqs). Effort was made to find a suitable cohomology that
would fit into the picture. Building on Serre’s idea, Artin and Grothendieck constructed étale
cohomology, which played a fundamental role in the proofs of the other statements of the Weil
conjectures by Grothendieck and Deligne in the 1960s and 1970s.

Quite unexpectedly, Dwork’s method did not involve the use of cohomology theory, but it
led to the development of p-adic cohomology theory, an example of which is Monsky-Washnitzer
cohomology [MW68, Mon71]. Monsky-Washnitzer cohomology satisfies the Lefschetz fixed point
formula, which can be used to count points and hence to compute zeta functions of curves.

Computing the zeta function—Kedlaya’s algorithm and variants

In 2001, Kedlaya developed an algorithm for counting points on hyperelliptic curves [Ked01],
using Monsky-Washnitzer cohomology. The curve over Fq is lifted to a curve over the ring Zq of
characteristic 0, and a lift of the q-Frobenius is defined over Zq. The algorithm then p-adically
approximates the action of the Frobenius on an explicit basis of cohomology. The same idea can
be applied to other types of curves. The algorithm was generalised to nondegenerate curves in
[CDV06].

Harvey optimised Kedlaya’s algorithm for large primes [Har07] and further developed an
algorithm that computes the zeta function simultaneously for a given curve for all primes smaller
than a fixed integer, in average polynomial time [Har14]. These methods can be used to obtain
numerical data for problems such as the Sato-Tate Conjecture.

Sato-Tate conjecture—computing statistical distributions

The original Sato-Tate conjecture was conjectured by Sato and Tate independently in the 1960s.
For an elliptic curve E over Q, we know by the Hasse bound that

ap := p+ 1−#E(Fp) ∈ [−2
√
p, 2
√
p].

The conjecture concerns the distribution of āp = ap/
√
p in the interval [−2, 2], where ap is the

trace of Frobenius. It turns out that the distribution of āp obtained is the same for any elliptic
curves without complex multiplication. The conjecture was only proved recently by Harris,
Shepherd-Barron and Taylor [HSBT10].

The conjecture has been generalised to abelian varieties over number fields. The generalisa-
tion was formulated by Serre [Ser94]. The generalised conjecture suggests the equidistribution
property of a sequence of polynomials P̄q(T ) = Pq(T/

√
q) which determines the zeta function

of the abelian variety modulo primes q. If the abelian variety is the Jacobian associated to a
curve, the polynomial Pq(T ) is the numerator of the zeta function of the curve modulo primes.
Therefore, by computing the zeta function of curves, numerical evidence can be obtained for
the conjecture. The genus 1 case corresponds to elliptic curves and there are 3 possible dis-
tributions. The genus 2 case was studied in [FKRS12] and examples were computed for all 52
possible distributions. The conjecture in the general case still remains open.
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Layout of this dissertation

In the first chapter, we will go through the basics of p-adic numbers and p-adic analysis, then
in the second chapter give an overview of Dwork’s proof of the rationality of the zeta function
of an algebraic variety, as presented by Koblitz [Kob84]. In the third chapter we will introduce
Monsky-Washnitzer cohomology. In the fourth chapter we will present Kedlaya’s algorithm,
using Monsky-Washnitzer cohomology to count points on hyperelliptic cuves [Ked01]. The fifth
chapter will cover Harvey’s algorithm, which counts points in average polynomial time [Har14].
In the last chapter, we will discuss the application of such algorithms in computing data for the
Sato-Tate Conjecture and illustrate this idea with some explicit examples.
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Chapter 1

p-adic Numbers and the Zeta Function

In this chapter we will give some background on p-adic numbers and the zeta function, sum-
marising the key facts and ideas from Chapters I, III and IV of [Kob84].

1.1 p-adic Numbers

Definition 1.1.1 (p-adic norm). The p-adic norm | · |p on Q is defined such that

|x|p =

{
p− ordp x if x 6= 0

0 if x = 0
,

where ordp : Q→ Z is the p-adic order

ordp x =

{
r such that x = pr n

m
, m, n ∈ Z, p - n,m if x 6= 0

∞ if x = 0
.

Every nontrivial norm on Q is equivalent to the usual absolute value or a p-adic norm by
Ostrowski’s Theorem.

Definition 1.1.2 (non-Archimedean norm). A norm ‖ · ‖ is non-Archimedean if it satisfies the
isosceles triangle principle ‖x+ y‖ ≤ max(‖x‖, ‖y‖). Equality holds if ‖x‖ 6= ‖y‖.

| · |p is a non-Archimedian norm on Q. To avoid confusion, we will denote the usual absolute
value | · |∞.

Definition 1.1.3 (p-adic numbers and integers). The p-adic numbers Qp is the completion of
Q with respect to the p-adic norm. Its subring Zp = {a ∈ Qp | |a|p ≤ 1} is the p-adic integers.

Remark 1. We can view p-adic numbers in a more concrete form. Any a ∈ Qp can be written
uniquely in the form

a =
∞∑

i=ordp a

bip
i,

where bi ∈ {0, . . . , p− 1} are the p-adic digits of a.
Alternatively, the p-adic integers Zp can be defined as the inverse limit lim← Z/pkZ. The

p-adic numbers Qp is the field of fractions, or equivalently Zp[1/p].

1



2 CHAPTER 1. P -ADIC NUMBERS AND THE ZETA FUNCTION

Theorem 1.1.4 (Hensel’s Lemma). Let F (x) = c0 +c1x+ · · ·+cnxn ∈ Zp[x]. If a0 ∈ Zp satisfies
F (a0) ≡ 0 mod p and F ′(a0) 6≡ 0 mod p, then there exists a unique a ∈ Zp such that F (a) = 0
and a ≡ a0 mod p.

Proof. See Theorem 3 in Chapter I of [Kob84].

Hensel’s Lemma can be viewed as a p-adic analogue of Newton’s method, but stronger as it
guarantees convergence to a solution.

Instead of {0, 1, . . . , p− 1}, we can take the p-adic digits from another set of representatives
{α0, α1, . . . , αp−1} ⊂ Zp, where αi ≡ i mod p.

Definition 1.1.5 (Teichmüller representatives). Consider 1, . . . , p − 1, the distinct roots of
xp−1 − 1 in Fp. By Hensel’s lemma, we can lift them to distinct roots α1, . . . , αp−1 in Z×p with
αi ≡ i mod p. Then 0, α1, . . . , αp−1 are the Teichmüller representatives of 0, 1, . . . , p− 1 respec-
tively.

Naturally, we would want study the algebraic closure and completion of Qp as we do in R.

Definition 1.1.6. Qalg
p denotes the algebraic closure of Qp. If α ∈ Qalg

p has the minimal poly-

nomial xn + a1x
n−1 + · · ·+ an, then |α|p = |an|1/np and ordp α = − logp |α|p.

Although C, the algebraic closure of R is complete, the algebraic closure of Qp is not complete,
see Theorem 12 in Chapter III of [Kob84]. We need to further extend to get a complete field.

Definition 1.1.7. Ω denotes the completion of Qalg
p with respect to | · |p. If x ∈ Ω is the limit of

a sequence {xi} in Qalg
p , then |x|p = limi→∞ |xi|p and ordp x = − logp |x|p.

Ω is algebraically closed, see Theorem 13 in Chapter III of [Kob84]. Ω is the smallest field
containing Q which is both algebraically closed and complete with respect to the norm | · |p.

1.2 p-adic Power Series

Since | · |p is a non-Archimedean norm, by the isosceles triangle principle, a p-adic power series
f(X) =

∑∞
n=0 anX

n ∈ Ω[[X]] converges for x if and only if anx
n → 0 as n→∞.

Definition 1.2.1 (radius of convergence). Let f(X) =
∑∞

n=0 anX
n ∈ Ω[[X]]. The radius of

convergence of f(X) is r := lim inf |an|
− 1
n

p . f(X) is an entire function if r is infinite.

Definition 1.2.2 (discs). The closed disc of radius r ∈ R about a point a ∈ Ω is

Da(r) := {x ∈ Ω | |x− a|p ≤ r}.

The open disc of radius r ∈ R about a point a ∈ Ω is

Da(r
−) := {x ∈ Ω | |x− a|p < r}.

When a = 0, we omit the subscript in the notation and write D(r) := D0(r).

Note that both Da(r) and Da(r
−) are simultaneously topologically open and closed sets.
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Definition 1.2.3 (p-adic exponential function). The p-adic exponential function is

expp(X) :=
∞∑
n=0

Xn

n!
∈ Qp[[X]].

Definition 1.2.4 (p-adic binomial expansion). The p-adic binomial expansion is

Ba,p(X) :=
∞∑
n=0

(
a

n

)
Xn =

∞∑
n=0

a(a− 1) . . . (a− n+ 1)

n!
Xn ∈ Qp[[X]].

For a ∈ Q, we have Ba,p(X) = (1 +X)a in Ω.
The following lemma is a criterion for a formal power series over Qp to have coefficients in

Zp, which is used in Dwork’s proof.

Lemma 1.2.5 (Dwork). Let F (X) =
∑
anX

n ∈ 1 + XQp[[X]]. Then an ∈ Zp for all m and n
if and only if F (Xp)/(F (X))p ∈ 1 + pXZp[[X]].

Proof. Suppose F (X) =
∑
anX

n ∈ 1 + XZp[[X]]. Since (a + b)p ≡ ap + bp mod p and ap ≡ a
mod p for a, b ∈ Zp, we have F (Xp) = (F (X))p + pXG(X) for some G(X) ∈ Zp[[X]]. As
1 +XZp[[X]] is a multiplicative group, we have

1

(F (X))p
∈ 1 +XZp[[X]] and

F (Xp)

(F (X))p
= 1 +

pXG(X)

(F (X))p
∈ 1 + pXZp[[X]].

Conversely, suppose F (Xp)/(F (X))p ∈ 1 + pXZp[[X]], then F (Xp) = (F (X))pG(X) for
some G(X) ∈ 1 + pXZp[[X]]. Write F (X) =

∑
aiX

i and G(X) = 1 +
∑
pbiX

i. By assumption
a0 = 1. Now carry out induction on n. Suppose ai ∈ Zp for any i < n. Equate the coefficients
in (F (X))pG(X) = F (Xp):

coefficient of Xn in

(
n∑
i=0

aiX
i

)p(
1 +

n∑
i=1

pbiX
i

)
=

{
an/p, if p | n
0, otherwise

,

(
n∑
i=0

aiX
i

)p

=

(
anX

n +
n−1∑
i=0

aiX
i

)p

=

(
n−1∑
i=0

aiX
i

)p

+ panX
n

(
n−1∑
i=0

aiX
i

)p−1

+ · · ·+ apnX
np

=
n−1∑
i=0

(ai + pci)X
ip + panX

n + (terms of order > n) for some ci ∈ Zp,

since (a+ b)p ≡ ap + bp ≡ a+ b mod p for a, b ∈ Zp. We have

pan +

dn
p
−1e∑
i=0

(ai + pci)pbn−ip = 0,

and hence

an = −
dn
p
−1e∑
i=0

(ai + pci)bn−ip ∈ Zp.



4 CHAPTER 1. P -ADIC NUMBERS AND THE ZETA FUNCTION

The criterion can be generalised to the following form.

Corollary 1.2.5.1. Let F (x, y) =
∑
amnX

nY m ∈ 1+XQp[[X, Y ]]+YQp[[X, Y ]]. Then we have
amn ∈ Zp for all m and n if and only if F (Xp, Y p)/(F (X, Y ))p ∈ 1+pXZp[[X, Y ]]+pY Zp[[X, Y ]].

With this criterion, we can prove the following series has coefficients in Zp.

Lemma 1.2.6. Define a function in Qp[[X, Y ]],

F (X, Y ) = BX,p(Y )B(Xp−X)/p,p(Y )B(Xp2−X)/p2,p(Y ) . . . B(Xpn−X)/pn,p(Y ) . . .

= (1 + Y )X(1 + Y p)(Xp−X)/p(1 + Y p2)(Xp2−Xp)/p . . . (1 + Y pn)(Xpn−Xpn−1
)/p . . .

=
∞∑
i=0

(
X

i

)
Y i

∞∏
n=1

∞∑
i=0

(
(Xpn −Xpn−1

)/p

i

)
Y ipn .

Then F (X, Y ) ∈ Zp[[X, Y ]].

Proof. Any coefficient of F (X, Y ) is a product of finitely many terms in Qp so

F (X, Y ) ∈ 1 +XQp[[X, Y ]] + YQp[[X, Y ]]

and

F (Xp, Y p)

(F (X, Y ))p
=

(1 + Y p)X
p
(1 + Y p2)(Xp2−Xp)/p(1 + Y p3)(Xp3−Xp2 )/p . . .

(1 + Y )pX(1 + Y p)Xp−X(1 + Y p2)Xp2−Xp . . .
=

(1 + Y p)X

(1 + Y )pX
.

Since 1 + Y ∈ 1 + Y Zp[Y ], by Lemma 1.2.5,

1 + Y p

(1 + Y )p
= 1 + pY G(Y ) for some G(Y ) ∈ Zp[[Y ]].

We have

(1 + Y p)X

(1 + Y )pX
= (1 + pY G(Y ))X =

∞∑
i=0

(
X

i

)
pi(Y G(Y ))i ∈ 1 + pXZp[[X, Y ]] + pY Zp[[X, Y ]].

Hence, F (X, Y ) ∈ Zp[[X, Y ]], by Corollary 1.2.5.1.

Theorem 1.2.7 (p-adic Weierstrass Preparation Theorem). If F (T ) is a p-adic entire function,
then for any R there exists a polynomial P (T ) and a p-adic power series G(T ) ∈ 1 + TΩ[[T ]]
which converges on the disc D(R) of radius R, such that P (T ) = F (T )G(T ).

Proof. See Chapter IV of [Kob84] for a proof using Newton polygons.

1.3 The Zeta Function

Definition 1.3.1 (zeta function). For a variety X, the zeta function is defined to be

Z(X/Fq;T ) := exp

(
∞∑
s=1

NsT
s

s

)
,

where Ns := #X (Fqs).
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The zeta function is a formal power series with positive integral coefficients bounded expo-
nentially.

Lemma 1.3.2. We have Z(Hf/Fq;T ) ∈ 1 + TZ[[T ]] and for any j ∈ N, the coefficient of T j is
a positive integer ≤ qnj.

Proof. Consider a point P = (x1, . . . , xn) ∈ Hf . Let s0 be the least s such that all xi ∈ Fqs .
Let Pj = (x1j, . . . , xnj), j = 1, . . . , s0 be the conjugates of P1 = P , so that xi1, . . . , xis0 are the
conjugates of xi = xi1 over Fq. If all of the xi are fixed by an automorphism σ of Fqs0 over Fq,
then all xi are in a smaller field, which contradicts with the choice of s0, so Pj are distinct.

Each P1, . . . Ps0 is an Fqs-point of Hf precisely when Fqs0 ⊆ Fqs , i.e. s0 | s. Thus, these
points contribute s0 to Ns0 , N2s0 , N3s0 , . . . , so their contribution to Z(Hf/Fq;T ) is

exp

(
∞∑
j=1

s0T
js0

js0

)
= exp(− log(1− T s0)) =

1

1− T s0
=
∞∑
j=0

T js0 ∈ 1 + T s0Z[[T ]].

Then Z(Hf/Fq;T ) is a product of series of this type and there are only finitely many such series
with first T -term with degree ≤ s for any fixed s, so Z(Hf/Fq;T ) has integer coefficients.

Finally, Ns ≤ #An
qs = qns, so the coefficient of T j in Z(Hf/Fq;T ) is less than the coefficient

of T j in

exp

(
∞∑
s=1

qnsT s

s

)
= exp(− log(1− qnT )) =

1

1− qnT
=
∞∑
j=0

qnjT j.
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Chapter 2

Dwork’s Proof on Rationality of the
Zeta Function

Dwork proved that the zeta function of any affine or projective variety is a rational function.
Although the Weil conjectures required the variety to be smooth, Dwork’s proof does not assume
smoothness of the variety so in fact the rationality holds more generally for any variety, including
those with singularities.

In this chapter, we will follow Chapter V of [Kob84].
Let Hf denote the affine hypersurface defined by a polynomial f and H̃f̃ denote the projective

hypersurface defined by a homogeneous polynomial f̃ .

Remark 2. An affine or projective variety is an intersection of a finite number of hypersurfaces,
so by the inclusion-exclusion principle X = ∪Hfi − ∩Hfifj + ∪Hfifjfk − ∩Hfifjfkfl + . . . , where
the union and intersections runs through all distinct i, j, k, l, . . . . We have

Z(X/Fq;T ) =

∏
Z(Hfi/Fq;T )∏
Z(Hfifj/Fq;T )

∏
Z(Hfifjfk/Fq;T )∏
Z(Hfifjfkfl/Fq;T )

. . . ,

where the products runs through all distinct i, j, k, l, . . . .
Since V is defined on a finite set of polynomials, Z(X/Fq;T ) is the product of a finite number

of zeta functions of hypersurfaces. Thus, it suffices to consider the zeta function of hypersurfaces.

Remark 3. A projective plane Pnk can be viewed as the disjoint union

An
k ∪ An−1

k . . .A1
k ∪ point

so a projective hypersurface H̃f̃ is a disjoint union of affine hypersurfaces and Z(H̃f̃/Fq;T ) is a
product of a finite number of zeta functions of affine hypersurfaces. Hence it is enough to prove
the rationality of the zeta function of affine hypersurfaces.

2.1 Lifting of Characters

Definition 2.1.1. An Ω-valued character of a finite group G is a homomorphism from G to the
multiplicative group Ω×.

7
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Let ε be a primitive pth root of unity in Qalg
p ⊂ Ω, then a 7→ εTr a is an Ω-valued character of

the finite group Fq. Now we proceed to find an analytic formula for this map.

Lemma 2.1.2. Let q = ps. Fix a ∈ F×q and let t ∈ Ω be the corresponding Teichmüller represen-

tative. Then there exist a p-adic power series Θ such that εTr a = Θ(T )Θ(tp)Θ(tp
2
) . . .Θ(tp

s−1
).

Proof. Let F be as previously defined in Lemma 1.2.6. Let λ = ε − 1. It is easy to check that
ordp λ = 1/(p− 1). Define

Θ(T ) = F (T, λ) = (1 + λ)T (1 + λp)(T p−T )/p(1 + λp
2

)(T p
2−T p)/p . . . (1 + λp

n

)(T p
n−T pn−1

)/p . . . ,

where each term on the right is a binomial series in Qp[[X, Y ]]. We have

F (T, λ) =
∞∑
n=0

(
T n

∞∑
m=0

amnλ
m

)
, amn ∈ Zp.

Since the power of T is less than or equal to the power of λ in each term of the binomial series,
we have amn = 0 when n < m. Let

Θ(T ) = F (T, λ) =
∞∑
n=0

anT
n, an =

∞∑
m=n

amnλ
m.

Since ordp an ≥ n/(p − 1), and Qp(ε) = Qp(λ) is complete, we have an ∈ Qp(ε) and Θ(T ) ∈
Qp(ε)[[T ]]. Also, Θ(T ) converges in D(p1/(p−1)−). We compute

Tr a = a+ ap + ap
2

+ · · ·+ ap
s−1 ≡ t+ tp + tp

2

+ · · ·+ tp
s−1

mod p,

Θ(T )Θ(tp)Θ(tp
2

) . . .Θ(tp
s−1

)

= F (t, λ)F (tp, λ) . . . F (tp
s−1

, λ)

= (1 + λ)t+t
p+···+tps−1

(1 + λp)(tp
s−t)/p(1 + λp

2

)(tp
s+1−tp)/p2(1 + λp

3

)(tp
s+2−tp2 )/p3 . . .

= (1 + λ)1+tp+···+tps−1

since tp
s

= t

= εTr a since εp = 1 and Tr a ≡ t+ tp + tp
2

+ · · ·+ tp
s−1

mod p.

2.2 Trace and Determinant

Define U := {(u1, . . . , un) | ui ∈ Z, ui ≥ 0 for all i} and the norm | · | on U by |u| =
∑n

i=1 ui.
Denote Xu := Xu1

1 . . . Xun
n , where u = (u1, . . . , un) ∈ U .

Define R := Ω〈X1, X2, . . . , Xn〉 to be the set of power series which converges on D(1),

R :=

{∑
w

gwX
w ∈ Ω[[X1, X2, . . . , Xn]]

∣∣∣∣∣ lim
|u|
|gu|p = 0

}
,

and its subspace

R† :=

{∑
w

gwX
w ∈ R

∣∣∣∣∣ there exists M > 0 such that ordp gu ≥M |u| for all u ∈ U

}
.
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Remark 4. The following are equivalent conditions:

(1). There exists some M > 0 such that ordp gu ≥M |u| for all u ∈ U ;

(2). There exists some λ > 1 such that lim|u| |gu|pλ|u| = 0;

(3). There exists some M > 0 and 0 < ρ < 1 such that |gu|p < Mρ|u| for all u ∈ U ;

(4). lim inf |u|(ordp gu/|u|) > 0.

Define Tq : R→ R such that
∑

u∈U auX
u 7→

∑
u aquX

u.
For any G(X) =

∑
w gwX

w ∈ R† ⊆ R, let LG denote the map of multiplication by G(X)
and let Gq(x) =

∑
w gwX

qw. Define Ψq,G := Tq ◦ LG.

Lemma 2.2.1. Let G(X) =
∑

w gwX
w ∈ R†. Let Ψ = Ψq,G = Tq ◦ LG, then Tr(Ψs) converges

for s = 1, 2, 3, . . . , and

(qs − 1)n Tr(Ψs) =
∑
x∈Ωn

xq
s−1

=1

G(x)G(xq)G(xq
2

) . . . G(xq
s−1

),

where x = (x1, . . . , xn), xq
i

= (xq
i

1 , . . . , x
qi

n ) and xq
s−1

= 1 denotes xq
s−1

1 = · · · = xq
s−1

n = 1

Proof. First we prove the case when s = 1,

Ψ(Xu) = Tq(LG(Xu)) = Tq

(∑
w

gwX
w+u

)
=
∑
w

gqwX
w+u =

∑
v

gqv−uX
v,

Tr Ψ =
∑
u

g(q−1)u,

which converges by definition of R†. We have

∑
xi∈Ω

xq−1
i =1

xwii =

{
q − 1, if q − 1 | wi
0, otherwise

.

Moreover, ∑
xi∈Ω

xq−1
i =1

xw =
n∏
i=1

 ∑
xq−1
i =1

xwii

 =

{
(q − 1)n, if q − 1 | w
0, otherwise

,

and ∑
xq−1=1

G(x) =
∑
w

gw
∑

xq−1=1

xw = (q − 1)n
∑
u

g(q−1)u = (q − 1)n Tr Ψ.

It is easy to check that LG ◦ Tq = Tq ◦ LGq = Ψq,Gq Suppose s > 1, then

Ψs = Tq ◦ LG ◦ Tq ◦ LG ◦Ψs−2 = Tq ◦ Tq ◦ LGq ◦ LG ◦Ψs−2

= Tq2 ◦ LG·Gq ◦Ψs−2 = · · · = Tqs ◦ LG·Gq ···Gqs−1 = Ψqs,G·Gq ···Gqs−1 .
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Note that R† is closed under multiplication and under the map G 7→ Gq, so G ·Gq · · ·Gqs−1 ∈ R†.
From the s = 1 case, replacing q by qs and G by G ·Gq · · ·Gqs−1 gives

(q − 1)n Tr(Ψs) = (q − 1)n Tr
(

Ψqs,G·Gq ···Gqs−1

)
=

∑
xqs−1=1

G(x)Gq(x) · · ·Gqs−1(x)

=
∑

xqs−1=1

G(x)G(xq)G(xq
2

) · · ·G(xq
s−1

).

Lemma 2.2.2. Let A = {aij}ri,j=1. We have det(1− AT ) =
∑r

m=0 bmT
m, where

bm = (−1)m
∑

1≤u1<···<um≤r
σ∈Sm

sgn(σ)au1,uσ(1)au2,uσ(2) . . . aum,uσ(m)
.

Then det(1− AT ) = expp

(
−
∑∞

s=1
Tr(As)T s

s

)
∈ Ω[[T ]].

Proof. Without loss of generality, we can assume A is upper triangular, then

expp

(
−
∞∑
s=1

Tr (As)T s

s

)
= expp

(
−
∞∑
s=1

r∑
i=1

asiiT
s

s

)

= expp

(
−

r∑
s=1

log (1− aiiT )

)
=

r∏
s=1

(1− aiiT ) = det(1− AT ).

Lemma 2.2.3. Let G(X) =
∑

w∈U gwX
w ∈ R†. Let Ψ = Tq◦LG, then Ψ(Xu) =

∑
v∈U gqv−uX

v,
so Ψ has matrix A = {au,v}u,v∈U = {gqv−u}u,v∈U . Then the series det(1−AT ) :=

∑∞
m=0 bmT

m,
where

bm = (−1)m
∑

distinct u1,...,um∈U
σ∈Sm

sgn(σ)au1,uσ(1)au2,uσ(2) . . . aum,uσ(m)
,

is well-defined, has infinite radius of convergence and satisfies the identity

det(1− AT ) = expp

(
−
∞∑
s=1

Tr(As)T s

s

)
∈ Ω[[T ]].

Proof. We have

ordp

(
gquσ(1)−u1gquσ(2)−u2 . . . gquσ(m)−um

)
≥M

(
|quσ(1) − u1|+ |quσ(2) − u2|+ · · ·+ |quσ(m) − um|

)
≥M

∑
i

(
|quσ(i)| − |ui|

)
= M(q − 1)

m∑
i=1

|ui|.

There are only finitely many distinct ui ∈ U with |ui| smaller than a fixed value, so we have∑m
i=1 |ui|/m → ∞ as m → ∞. Then we have ordp bm → ∞ as m → ∞ and ordp bm/m → ∞

as m → ∞. For any fixed t, ordp bmt
m = m (ordp bm/m+ ordp t) → ∞ as m → ∞. Hence

det(1 − AT ) has infinite radius of convergence. By taking r → ∞ in Lemma 2.2.2, we obtain
the identity det(1− AT ) = expp(−

∑∞
s=1 Tr (As)T s/s).
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2.3 Meromorphicity

Let f(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn]. We want to prove that Z(Hf/Fq;T ) ∈ Z[[T ]] ⊂ Ω[[T ]] is p-
adic meromorphic, i.e. a quotient of two power series in Ω[[T ]] with infinite radius of convergence.
First consider

Z ′(Hf/Fq;T ) := exp

(
∞∑
s=1

N ′sT
s

s

)
,

where N ′s = #{(x1, x2, . . . , xn) ∈ An
Fqs | f(x1, x2, . . . , xn) = 0 and xi 6= 0 for all i}.

Lemma 2.3.1. Z ′(Hf/Fq;T ) is p-adic meromorphic.

Proof. Fix s ∈ N and let q = pr. If t denotes the Teichmüller representative of a ∈ Fqs , then by
Lemma 2.1.2 the pth root of 1 given by ε has a p-adic analytic formula

εTr a = Θ(T )Θ (tp) Θ(tp
2

) . . .Θ(tp
rs−1

).

Suppose u ∈ F×qs . For some x ∈ Fqs such that Trx 6= 0,∑
u∈Fqs

εTru =
∑

u+x∈Fqs

εTr(u+x) = εTrx
∑

u+x∈Fqs

εTru = εTrx
∑
u∈Fqs

εTru,

∑
x0∈Fqs

εTr(x0u) =
∑
u∈Fqs

εTru = 0 since Trx 6= 0.

When u ∈ Fqs , ∑
x0∈Fqs

εTr(x0u) =

{
0, if u ∈ F×qs
qs, if u = 0

.

Subtracting the x0 = 0 term gives

∑
x0∈F×qs

εTr(x0u) =

{
−1, if u ∈ F×qs
qs − 1, if u = 0

.

Applying to u = f(x1, . . . , xn) and summing over all x1, . . . , xn ∈ F×
qS

gives∑
x0,...,xn∈F×qs

εTr(x0f(x1,...,xn)) = N ′s(q
s − 1) + ((qs − 1)n −N ′s) (−1) = qsN ′s − (qs − 1)n.

Replace the coefficients in X0f(X1, . . . , Xn) ∈ Fq[X0, X1, . . . , Xn] by their Teichmüller represen-

tatives to get
∑N

i=1 aiX
wi ∈ Ω[X0, X1, . . . , Xn], where ap

r

i = ai andXwi denotesXwi0
0 Xwi1

1 . . . Xwin
n ,

wi = (wi0, wi1, . . . , win). We have

qsN ′s = (qs − 1)n +
∑

x0,...,xn∈F×qs

εTr(x0f(x1,...,xn))

= (qs − 1)n +
∑

x0,...,xn∈Ω

xq
s−1

0 =···=xq
s−1
n =1

N∏
i=1

Θ(aix
wi)Θ(apix

pwi) . . .Θ
(
ap

rs−1

i xp
rs−1wi

)
.
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Let G(X0, . . . , Xn) :=
∏N

i=1 Θ (aiX
wi) Θ (apiX

pwi) . . .Θ
(
ap

r−1

i Xpr−1wi

)
∈ R† since R† is closed

under multiplication and Θ
(
ap

j−1

i Xpj−1wi

)
∈ R† by Remark 5. We compute

qsN ′s = (qs − 1)n +
∑

x0,...,xn∈Ω

xq
s−1

0 =···=xq
s−1
n =1

G(x)G(xq)G(xq
2

) . . . G(xq
s−1)

= (qs − 1)n + (qs − 1)n+1 Tr(Ψs) by Lemma 2.2.1

=
n∑
i=0

(
n

i

)
(−1)iqs(n−i) + Tr(Ψs)

n+1∑
i=0

(
n+ 1

i

)
(−1)iqs(n+1−i)

so

N ′s =
n∑
i=0

(
n

i

)
(−1)iqs(n−i−1) + Tr(Ψs)

n+1∑
i=0

(
n+ 1

i

)
(−1)iqs(n−i),

and

Z ′(Hf/Fq;T ) = expp

(
∞∑
s=1

N ′sT
s

s

)

=
n∏
i=0

expp

(
∞∑
s=1

(
n

i

)
(−1)iqs(n−i−1)T s

s

)
n+1∏
i=0

expp

(
∞∑
s=1

(
n+ 1

i

)
(−1)iqs(n−i) Tr(Ψs)T s

s

)

=
n∏
i=0

(1− qn−i−1T )(−1)i+1(ni)
n∏
i=0

det(1− A(qn−iT ))(−1)i+1(ni),

where A is the matrix of Ψ. By Lemma 2.2.3, each term on the right is a p-adic entire function.

Remark 5. If Θ(T ) =
∑∞

n=0 anT
n, we have Θ(aXw) =

∑∞
n=0 ana

nXwn =
∑

v=nw gvX
v, where

gv = anwa
n if w | v. Since ordp an ≥ n/(p− 1), for any a with |a|p ≤ 1 ordp gv ≥ |w|/|v|(p− 1).

Theorem 2.3.2. Z(Hf/Fq;T ) ∈ Z[[T ]] ⊂ Ω[[T ]] is p-adic meromorphic.

Proof. Prove by induction on the number of variables n. Note that n − 1 is the dimension of
the hypersurface Hf .

If n = 0, it is trivial since Hf = ∅.
Suppose the theorem holds for 1, . . . , n− 1. From Lemma 2.3.1, we have that Z ′(Hf/Fq;T )

is p-adic meromorphic. We have

Z(Hf/Fq;T ) = Z ′(Hf/Fq;T ) exp

(
∞∑
s=1

(Ns −N ′s)T s

s

)
,

where exp (
∑∞

s=1(Ns −N ′s)T s/s) is the zeta function for H = ∪ni=1Hi, a disjoint union of Hi

defined by f(X1, X2, . . . , Xn) = 0 and Xi = 0.

Z(H/Fq;T ) =

∏
Z(Hi/Fq;T )∏

Z(Hi ∩Hj/Fq;T )

∏
Z(Hi ∩Hj ∩Hk/Fq;T )∏

Z(Hi ∩Hj ∩Hk ∩Hl/Fq;T )
. . . ,
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where products in the expression on the right runs through zeta functions of intersections of
distinctHi. TheHi have dimension less than n−1, and so do their intersections. By the induction
assumption, the zeta functions in the expression are all meromorphic, so Z(H/Fq;T ) as a finite
product of such functions, is meromorphic too. Hence Z(Hf/Fq;T ) := Z ′(Hf/Fq;T )Z(H/Fq;T )
is also meromorphic.

2.4 Rationality of the Zeta Function of Affine Hypersur-

faces

Lemma 2.4.1 (rationality criterion). Let K be a field and let F (T ) =
∑∞

i=0 aiT
i ∈ K[[T ]]. For

m, s ≥ 0, let As,m = {as+i+j}0≤i,j≤m and Ns,m = det(As,m). If there exist integers m ≥ 0 and S
such that Ns,m = 0 whenever s ≥ S, then F (T ) = P (T )/Q(T ) for some P (T ), Q(T ) ∈ K[T ].

Proof. Pick m minimal such that there exists some S such that Ns,m = 0 for s ≥ S. Denote the
(i+ 1)th row of As,m by ri.

Suppose for a contradiction that Ns,m−1 = 0 for some s ≥ S. Then there exist a linear
combination of r0, r1, . . . , rm−1, expressed as α0r0 + α1r1 + · · · + αm−1rm−1 such that the first
m entries become 0. Let k be minimal with αk 6= 0. In As,m, replace the (k + 1)th row rk with
rk + α−1

k (αk+1rk+1 + · · ·+ αm−1rm−1) to get a new matrix

Ãs,m = {ãs+i+j}0≤i,j≤m =



ãs ãs+1 . . . ãs+m
ãs+1 ãs+2 . . . ãs+m+1

...
...

0 . . . 0 β
...

...
ãs+m ãs+m+1 . . . ãs+2m


,

the determinant remains the same, and now the (k + 1)th row is (0, . . . , 0, β).
If k > 0, Ãs+1,m−1 has a row of 0, so Ns+1,m−1 = 0. If k = 0, β · det(Ãs+1,m−1) =

βNs+1,m−1= Ns,m = 0 so Ns+1,m−1 = 0, otherwise β = 0, then Ãs+1,m−1 has a row of 0, which
implies Ns+1,m−1 = 0.

By induction, Ns′,m−1 = 0 for any s′ ≥ s, which contradicts the minimality of m. Hence, we
have shown that Ns,m−1 6= 0 for all s ≥ S.

Since NS,m = 0, there exist u = (um, um−1, . . . , u0)T such that AS,mu = 0. For any s ≥ S,
Ns,m = 0 and Ns,m−1 6= 0, so rm is a linear combination of r0, r1, . . . , rm−1. If As−1,mu = 0, we
have r0u = r2u = · · · = rm−1u = 0, rm is a linear combination of r0, r1, . . . , rm−1 so rmu = 0,
then As,mu = 0. By induction, for any s ≥ S, we have As,mu = 0, i.e.

asum + as+1um−1 + · · ·+ as+mu0 = 0 for all s ≥ S,

which implies (
∑m

t=0 uiX
i) (
∑∞

i=1 aiX
i) is a polynomial of degree < S +m.

By bounding Ns,m with the p-adic norm and the Euclidean norm, and observing that they
cannot both be small for large enough s, we can show that Z(T ) satisfies the criterion above,
hence is rational.
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Theorem 2.4.2. Z(Hf/Fq;T ) is a rational function.

Proof. Write Z(T ) = Z(Hf/Fq;T ). By Theorem 2.3.2, Z(T ) is meromorphic, so we have Z(T ) =
A(T )/B(T ) for some p-adic entire functions A(T ) and B(T ). Take R = q2n and apply the p-adic
Weierstrass Preparation Theorem (Theorem 1.2.7) to B(T ), so B(T ) = P (T )/G(T ), where P (T )
is a polynomial and G(T ) converges on D(R).

Let F (T ) = A(T )G(T ), so F (T ) = P (T )Z(T ). Let Z(T ) =
∑∞

i=0 aiT
i ∈ 1 + TZ[[T ]],

F (T ) =
∑∞

i=0 biT
i ∈ 1 + TΩ[[T ]] and P (T ) =

∑e
i=0 diT

i ∈ 1 + TΩ[T ]. Let m = 2e, let

As,m = {as+i+j}0≤i,j≤m =


as as+1 . . . as+m
as+1 as+2 . . . as+m+1

...
...

. . .
...

as+m as+m+1 . . . as+2m


and Ns,m = det(As,m).

By Lemma 1.3.2, |ai|∞ ≤ qin, so all entries in As,m are less than qn(s+2m), hence

|Ns,m|∞ ≤ (m+ 1)!qn(s+2m)(m+1).

Now equate coefficients in F (T ) = P (T )Z(T ),

bj+e = aj+e + d1aj+e−1 + · · ·+ deaj.

Let ci denote the ith column in As,m. For 0 ≤ j ≤ e, replace each (j + e)th column cj+e with

cj+e + d1cj+e−1 + · · ·+ decj,

so that the new matrix has entries as+i+j in the first e columns and entries bs+i+j in the last
e+ 1 columns, 

as as+1 . . . as+e−1 bs+e . . . bs+m
as+1 as+2 . . . as+e−1 bs+e . . . bs+m
...

...
...

...
...

as+m as+m+1 . . . as+m+e−1 bs+m+e . . . bs+2m

 .

The new matrix has the same determinant Ns,m. F (T ) converges on D(R) so for sufficiently
large i, we have |bi|p ≤ R−i = q−2ni. Also, ai ∈ Z, so |ai|p ≤ 1. Then

|Ns,m|p ≤ (maxj≤s+e|bj|p)e+1 < q−2n(s+e)(e+1) < q−ns(m+2).

Multiplying the estimates,

|Ns,m|p|Ns,m|∞ < (m+ 1)!qn(s+2m)(m+1)−ns(m+2) < (m+ 1)!qn(2m(m+1)−s),

so we can pick large enough s such that

|Ns,m|p|Ns,m|∞ < 1.

But ai ∈ Z so Ns,m ∈ Z, hence we must have Ns,m = 0 for s sufficiently large. By Lemma 2.4.1,
Z(T ) is a rational function.

We have proved the rationality of zeta functions of affine hypersurfaces. Now Dwork’s theo-
rem follows from Remarks 3 and 2.

Theorem 2.4.3 (Dwork). The zeta function of any affine or projective variety is a rational
function.



Chapter 3

Monsky-Washnitzer Cohomology

It was believed that some cohomology theory would prove the Weil conjectures because co-
homology can be used to count fixed points and points in a finite field Fq are fixed by the
q-Frobenius. Although Dwork’s proof did not involve cohomology, it inspired the construction
of Monsky-Washnitzer cohomology. In 1971, Monsky proved the Lefschetz fixed point formula

#X(Fqs) =
n∑
i=0

(−1)i Tr
((
qnF−1

∗
)s
, H i

MW (X/K)
)
,

where H i
MW (X/K) are Monsky-Washnitzer cohomology groups. In this chapter, we will fo-

cus on Monsky-Washnitzer cohomology, so we will henceforth omit the subscripts and write
H i(X/K) := H i

MW (X/K). A consequence is

Z(X/Fq;T ) =
∏
i

det
(
1− TqnF−1

∗ , H i(X/K)
)(−1)i

.

The idea was that if H i(X/K) are finite-dimensional, then this would provide a proof for the
rationality of the zeta function. This was later proved by Berthelot [Ber97].

In this chapter, the background on affinoid algebra and Tate’s Theorem are based on the
first four chapters of [FvdP04]. The proof of the Lefschetz fixed point formula presented here
is the refined proof by van der Put in [vdP86], which is also given in Chapter 7.6 of [FvdP04].
The original proof by Monsky can be found in [Mon71].

3.1 Discrete Valuation Rings

Definition 3.1.1 (discrete valuation). Let K be a field. A discrete valuation of K is a map
v : K \ {0} → Z such that for all x, y ∈ K, x, y 6= 0,

(1). v(xy) = v(x) + v(y),

(2). v(x+ y) ≥ min(v(x), v(y)).

A non-Archimedean norm on K is defined by fixing some 0 < ρ < 1 and setting |x| = ρ−v(x).
K is a discrete valuation field if it is equipped with a discrete valuation. Its ring of integers
R := {a ∈ K | |a| ≤ 1} = {x ∈ K | v(x) ≥ 0} is a discrete valuation ring, with maximal ideal
m := {a ∈ K | |a| < 1}. The residue field of K is k = R/m.

15
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A discrete valuation and its corresponding non-Archimedean norm are generalisations of the
p-adic order and p-adic norm, respectively. If K was taken to be Qp, the valuation ring R would
be Zp, m would be the ideal pZp and the residue field would be k = Fp.

Throughout this chapter, K will denote a field with non-Archimedean norm, which we will
denote as | · |.

Definition 3.1.2 (spectrum of a ring). The spectrum of a ring R, denoted Spec(R), is the set
of all prime ideals of R. The maximal spectrum of a ring R, denoted Sp(R), is the set of all
maximal ideals of R.

3.2 Tate’s Theorem

Definition 3.2.1 (G-topologies). Let X be a set. A G-topology T on X consists of

(1). a family F of subsets of X;

(2). for each U ∈ F , a set Cov(U) of coverings of U by elements of F ;

satisfying the properties:

(1). {U} ∈ Cov(U);

(2). For V, U ∈ F with V ⊂ U and U ∈ Cov(U), {U ′ ∩ V | U ′ ∈ U} ∈ Cov(V );

(3). If U ∈ F , {Ui}i∈I ∈ Cov(U) and Ui ∈ Cov(Ui), then ∪i∈IUi ∈ Cov(U).

U ∈ F are admissible sets and the elements of Cov(U) are admissible coverings.

Definition 3.2.2 (sheaf). A presheaf F of abelian groups for a G-topology consists of the data:

(1). for every admissible U , an abelian group F (U);

(2). for every inclusion U ⊆ V of admissible sets, there is a morphism of abelian groups
ρVU : F (V )→ F (U);

satisfying the requirements:

(1). F (∅) = 0;

(2). for every admissible set U , ρUU = id;

(3). for a sequence of admissible sets U ⊂ V ⊂ W , ρVU ◦ ρWV = ρWU .

A presheaf is a sheaf if

(1). if U is an admissible set, {Vi} ∈ Cov(U) and f ∈ F (U) such that ρUVif = 0 for all i, then
f = 0;

(2). if ρUiUi∩Ujfi = ρ
Uj
Ui∩Ujfj for each Ui∩Uj 6= ∅, then there is a unique f ∈ F (U) with ρUUif = fi

for all i.
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Definition 3.2.3 (Čech complex). Let S be a presheaf of abelian groups and U = {Ui}i∈I ∈
Cov(U). The Čech complex is a complex of abelian groups 0→ C0 d0−→ C1 d1−→ C2 d2−→ . . . , where

Cn =
∏

i0,...,in∈I

S(Ui0 ∩ Ui1 ∩ · · · ∩ Uin).

Write ξ ∈ Cn as {ξ(i0,...,in)}. The map dn : Cn → Cn+1 is given by

dn(ξ)(i0,...,in) =
n∑
j=0

ξ(i0,...,ij−1,ij+1,...,in).

The nth cohomology group of the complex is Ȟn(U , S) = ker(dn)/ im(dn−1).

Definition 3.2.4 (affinoid algebra). K〈X1, . . . , Xn〉 is the subring of the ring of formal power
series K[[X1, . . . , Xn]], consisting of all power series

∑
α cαz

α ∈ K[[X1, . . . , Xn]] satisfying
lim |cα| = 0. An affinoid algebra is a K-algebra A of the form K〈X1, . . . , Xn〉/I for some
ideal I in K〈X1, . . . , Xn〉. X := Sp(A) is an affinoid space.

Definition 3.2.5 (affinoid subspaces). S ∈ X is an affinoid subspace if there exists a morphism
of affinoid algebras over K, φ : A → B such that Sp(φ)F ⊆ S ∈ X and for every morphism
ψ : A→ C such that Sp(ψ)Sp(C) ⊆ S, there exists a unique morhpism of affinoid algebras over
K, τ : B → C with ψ = τ ◦ φ.

Definition 3.2.6 (rational subsets). For an affinoid algebra A over K, R ⊂ X := Sp(A) is
rational if there exists f0, . . . , fs ∈ A generating the unit ideal of A such that

R = {x ∈ X | |fi(x)| ≤ |f0(x)| for i = 1, . . . , s}.

Definition 3.2.7. The presheaf OX on X is defined by

OX(R) = A〈Z1, . . . , Zs〉/(f1 − f0Z1, . . . , fs − f0Zs)

for any rational set R = {x ∈ X | |fi(x)| ≤ |f0(x)| for i = 1, . . . , s}.

Definition 3.2.8 (very weak topology). The admissible subset of X for the very weak G-topology
are the rational subsets. A covering {Ri}i∈I of a rational R by rational sets Ri is admissible if
there exists a finite subset J ⊂ I with R = ∪i∈JRi.

Remark 6. Lemma 4.1.3 in [FvdP04] shows that it is indeed a G-topology.

Definition 3.2.9 (acyclic). Let F be any presheaf of abelian groups on X and U an admissible
covering of X, then U is acyclic for F if Ȟ0(U , F ) = F (X) and Ȟ i(U , F ) = 0 for all i > 0.

Theorem 3.2.10 (Tate’s acyclicity theorem). Let A be an affinoid algebra over K, M a finitely
generated A-module and U a finite covering of X := Sp(A) by affinoid subspaces, then U is
acyclic for the presheaf defined by M ⊗A OX .

The theorem implies that OX is a sheaf. OX is called the structure sheaf of X and the global
section of the structure sheaf is the coordinate ring of its reduction to an affine variety. See
Theorem 3.2 in Chapter I of [Har77].
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3.3 Monsky-Washnitzer Cohomology

Consider a smooth affine variety X over a field k = Fq of characteristic p > 0 with coordinate
ring Ā. Let R be a complete mixed characteristic discrete valuation ring with residue field k and
m the maximal ideal of R. Let K := Qt(R) be the field of fractions of R with characteristic 0.

Let π be a generator of the maximal ideal of the valuation ring R, then R/πR = k. A result
of R. Elkik shows that there exists a finitely generated smooth R-algebra B, i.e. Spec(B) is a
smooth variety, such that B/πB = Ā. Write B = R[T1, . . . , Tn]/(f1, . . . , fm).

We want to be able to define a lift of the q-Frobenius, but there is no ring endomorphism
on B = R[T1, . . . , Tn]/(f1, . . . , fm) that lifts the Frobenius map on Ā. Naturally, we would be
looking to lift Ā to R〈T1, . . . , Tn〉/(f1, . . . , fm) instead, but this leads to another problem. Specif-
ically,

∑∞
i=0 p

nT p
n−1 would integrate to

∑∞
i=0 T

pn which is not in R〈T1, . . . , Tn〉/(f1, . . . , fm), so
the space is not closed under formal integration, then the cohomology would be larger than that
of A. Therefore, we define a slightly smaller space which excludes such elements.

Definition 3.3.1 (overconvergent elements). The subring of R〈T1, . . . , Tn〉 consisting of all over-
convergent elements is denoted by

R〈T1, . . . , Tn〉† :=

{∑
u

cuT
u ∈ R〈T1, . . . , Tn〉

∣∣∣∣∣ there exists λ > 1 such that lim
|u|
|cu|λ|u| = 0

}
.

A weakly convergent finitely generated (wcfg) algebra is an R-algebra of the form R〈T1, . . . , Tn〉†/I
for some finitely generated ideal I in R〈T1, . . . , Tn〉†.

Note that there are equivalent formulations of the overconvergent condition, as in Remark
4, resembling the space R† in Dwork’s proof.

Let A = R〈T1, . . . , Tn〉†/(f1, . . . , fm), then the ring A satisfies A/πA = Ā and A⊗R k = Ā.

Definition 3.3.2 (universal module of differentials). The universal module of differentials ΩĀ/k

of Ā over k is the Ā-module generated by all da for a ∈ Ā, satisfying the following relations:

(1). ds = 0 for all s ∈ k;

(2). d(a+ b) = da+ db for all a, b ∈ Ā;

(3). d(ab) = adb+ bda for all a, b ∈ Ā.

The k-linear map d : Ā→ ΩĀ/k is the differentiation map.

Definition 3.3.3 (de Rham cohomology). Suppose A = R〈T1, . . . , Tn〉†/(f1, . . . , fm), then the
module of differentials is defined by

D1(A) := (AdT1 + · · ·+ AdTn) /

(
m∑
i=1

A

(
∂fi
∂T1

dT1 + · · ·+ ∂fi
∂Tn

dTn

))
.

The de Rham complex D•(A) is

0→ A
d0−→ D1(A)

d1−→ D2(A)→ . . .

where Di(A) = ∧iD1(A) and di is exterior differentiation. Since ker di/ im di−1 only depends on
the k-algebra Ā, we can define the ith cohomology group of the complex

H i(X/R) := H i(Ā/R) := H i
dR(A) = ker di/ im di−1.
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Definition 3.3.4 (Monsky-Washnitzer cohomology). The Monsky-Washnitzer cohomology groups
are the cohomology groups of the complex D•(X) = D•(A)⊗R K,

H i(X/K) := H i(Ā/K) := H i(Ā/R)⊗R K.

R〈T1, . . . Tn〉† satisfies Weierstrass preparation and division, so R〈T1, . . . Tn〉† is Noetherian
and flat over R[T1, . . . , Tn].

The module D1(A)⊗R Ā = ΩĀ/k is projective, i.e. direct sum of free modules, and its rank
equals the dimension d of Ā. By flatness of Ā, D1(A) is also projective of rank d.

3.4 The Lefschetz Fixed Point Formula

The Lefschetz fixed point formula for Monsky-Washnitzer cohomology is given by

#X(Fqs) =
n∑
i=0

(−1)i Tr
((
qnF−1

∗
)s
, H i(X/K)

)
.

Note that it suffices to prove it for the case s = 1. Suppose the formula holds when s = 1.
Let F∗ be a lift of the q-Frobenius, then F s

∗ is a lift of the qs-Frobenius. By considering qs instead
of q we have

#X(Fqs) =
n∑
i=0

(−1)i Tr
(
(qs)n(F s

∗ )
−1, H i(X/K)

)
=

n∑
i=0

(−1)i Tr
(
(qnF−1

∗ )s, H i(X/K)
)
.

Definition 3.4.1 (nuclear map). Let M be a vector space over K. Consider a K-linear map
L : M → M . Let Kalg be the algebraic closure of K. A non-zero element λ ∈ Kalg is an
eigenvalue of L if its minimum polynomial g ∈ K[T ] has the property ker (g(L),M) 6= 0. L is
nuclear if

(1). for any eigenvalue λ 6= 0 with minimum polynomial g ∈ K[T ], there exists a direct sum
decomposition M = A⊕ B such that A and B are invariant under L; g(L) is bijective on
A and B = ∪m≥1 ker(g(L)m) is finite dimensional;

(2). the non-zero eigenvalues of L form a finite set or a sequence with limit 0.

A nuclear operator has a well-defined trace, which is the sum of its eigenvalues counted with
multiplicities.

Theorem 3.4.2 (Hilbert’s syzygy theorem). Any finitely generated module over the polynomial
ring k[T1, . . . , Tn] admits a finite free resolution.

Proof. See Chapter 19.2 in [Eis95].

Theorem 3.4.3. Any finitely generated R〈T1, . . . Tn〉†-module admits a finite free resolution.

Proof. The reduction of the module has a finite free resolution by the Hilbert’s syzygy theorem,
which can be then lifted. See Lemma 2.7 in [Mon71] for details.
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Definition 3.4.4 (Frobenius map). The lift of the q-Frobenius F : A→ A is the homomorphism
on A that satisfies a 7→ aq mod q for any a ∈ A.

Definition 3.4.5 (Dwork operator). Given a wcfg R-algebra A and a lift F : A → A of
q-Frobenius on Ā, an additive operator θ : M → M on a finitely generated A-module M is
a Dwork operator if θ(F (a)m) = aθ(m) holds for any a ∈ A and m ∈M .

Note that the definition of a Dwork operator is somewhat similar to the operator Tq with
Tq ◦ LGq = LG ◦ Tq in Dwork’s proof.

Theorem 3.4.6. Consider a wcfg R-algebra A, a lift F : A → A of the q-Frobenius on Ā and
a finitely generated A-module M . Any Dwork operator θ : M → M induces a nuclear map
θ : M ⊗K →M ⊗K.

Proof. There is a surjective homomorphism R〈T1, . . . Tn〉† → A and a lift of the q-Frobenius
of k[T1, . . . , Tn] to R〈T1, . . . , Tn〉† which induces the given F on A, so it suffices to prove for
A = R〈T1, . . . Tn〉†.

By Theorem 3.4.3, the module M has a finite free resolution

0→Ms
φs−→Ms−1

φs−1−−→ . . .
φ1−→M0

φ0−→M → 0.

On each Mi, we will construct Dwork operators θi such that the diagram

0 Ms Ms−1 . . . M0 M 0

0 Ms Ms−1 . . . M0 M 0

φs

θs

φs−1

θs−1

φ1 φ0

θ0 θ

φs φs−1 φ1 φ0

commutes. Let e1, . . . , em be a free basis of M0. Since A is an F (A)-module with free basis {Tu |
0 ≤ uj < q for all j} and θ0 (

∑m
i=1

∑
u F (aui)T

uei) =
∑m

i=1

∑
u auiθ0 (Tuei), θ0 is completely

determined by {θ0 (Tuei) | 1 ≤ i ≤ m, 0 ≤ uj < q for all j}. θ0 (Tuei) can be found by setting
φ0 ◦ θ = θ0 ◦ φ0. Repeating the process for M1, . . . ,Ms, we have the Dwork operators θ0, . . . , θs.
If θ0, . . . , θs are nuclear, then θ is also nuclear, hence it suffices to prove the theorem for free
modules M .

Suppose that M is a free module over A with basis e1, . . . , em. For r > 1, let A(r) denote
the subspace of A consisting of the power series

∑
auT

u with lim |au|r|u| = 0. A(r) is a Banach
space with respect to the norm ‖

∑
auT

u‖ = max |au|r|u|. Let M(r) = ⊕mi=1A(r)ei, which is also
a Banach space.

Let
∑

w

∑
u auwT

qw+u ∈ A(r) where 0 ≤ uj < q, then lim|w| |auw|r|qw+u| = 0 for any u.

θ

(∑
w

∑
u

auwT
qw+uei

)
=
∑
w

∑
u

auwT
wθ (Tuei)

and {θ (Tuei) | 1 ≤ i ≤ m, 0 ≤ uj < q for all j} has finite elements. For 1 < r ≤ r0 for
some small enough r0, θ (M(r)) ⊆ M (rq) and its restriction to M(r), θ1

r : M(r) → M (rq) is
continuous. The inclusion map θ2

r : M (rq) ↪→ M(r) is the uniform limit of R-linear operators

of finite rank, and so θr = θ2
r ◦ θ1

r : M(r)
θ1r−→M (rq)

θ2r
↪−→M(r) is also completely continuous.
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Serre showed in [Ser62] that the uniform limit of R-linear operators of finite rank of a Banach
space is nuclear. Thus for all r with 1 < r ≤ r0, the map θr is nuclear. Tr(θr) can be calcu-
lated with respect to any orthogonal basis {bn | n ≥ 1} of M(r). If θr(bn) =

∑∞
m=1 λnmbm

for n ≥ 1, then Tr(θr) =
∑∞

n=1 λnn. The spaces M(r) have a common orthogonal basis
{Tuei | 1 ≤ i ≤ m, u ∈ Zn≥0}. Hence Tr(θr) for 1 < r ≤ r0 does not depend on r and the same
holds for Tr(θnr ) and det(1− tθr) for 1 < r ≤ r0. Therefore, θ = lim θr : M = ∪r>1M(r)→M is
also nuclear.

Theorem 3.4.7. Let B be a wcfg algebra associated to a smooth connected affine variety over
k. Let A be the integral closure of B in a finite extension of Qt (B). Then there exists a
D• (B)-linear trace map

SA/B : D•(A)→ D• (B)

extending the trace map TrQt(A)/Qt(B) : Qt(A)→ Qt (B).

Proof. The natural map D• (B)→ D•(A) extends to an isomorphism

D• (B)⊗B Qt(A)
∼=−→ D•(A)⊗A Qt(A).

See Theorem 8.1 in [MW68].
Define the trace map

SA/B : D•(A)→ D•(A)⊗A Qt(A)
∼=−→ D• (B)⊗B Qt(A)

idD•(B)⊗TrQt(A)/Qt(B)−−−−−−−−−−−−−→ D• (B)⊗B Qt (B) .

It remains to show that the image of SA/B is in D• (B). See Theorem 8.3 in [MW68].

Theorem 3.4.8. Let X be smooth affine and connected over k = Fq with dimension n. Suppose
Ā, the coordinate ring of X, is smooth and finitely generated. Consider an wcfg algebra A
obtained by lifting Ā and a lift F : A→ A of the q-Frobenius of Ā. Define

ψ : D•(A)
SA/F (A)−−−−→ D•(F (A))

∼=←−
F
D•(A).

Then

(1). ψ(F (A)m) = aψ(m) for a ∈ A and m ∈ D•(A).

(2). ψ(Di(A)) ⊆ Di(A) and ψ commutes with the differentiation on D•(A).

(3). ψ ◦ F is multiplication by qn.

(4). Let F∗ and ψ∗ denote the actions of F and ψ on H∗(X/K) respectively. Then F∗ is bijective
and ψ∗ = qnF−1

∗ .

(5). ψ : D•(A)⊗K → D•(A)⊗K is nuclear. Moreover

n∑
i=0

(−1)i Tr
(
qnF−1

∗ , H i(X/K)
)

=
n∑
i=0

(−1)i Tr(ψ,Di(A)⊗K).
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Proof. (1) and (2) follow from the definition of ψ.
For (3), since n = dim Ā, q = #k and SA/F (A) is D•(F (A))-linear, ψ ◦ F = SA/F (A) is

multiplication by SA/F (A)(1) = [A : F (A)] = [Ā : Āq] = qn.
For (4), suppose Qt(A) is a Galois extension of Qt(F (A)) with group G, then every σ ∈ G

maps A onto A and σ ≡ id mod π. It follows that σ∗ on H∗(Ā/K) is also the identity. Let i
denote the inclusion F (A) ↪−→ A. From i ◦ SA/F (A) =

∑
σ∈G σ : D•(A) → D•(A), it follows that

i∗ ◦
(
SA/F (A)

)
∗ : H∗(Ā/K) → H∗(Ā/K) is multiplication by qn. Hence

(
SA/F (A)

)
∗ and ψ∗ are

injective. ψ∗ ◦ F∗ = qn holds by (3). Hence ψ∗ and F∗ are bijective.
If Qt(A) is not a Galois extension of Qt(F (A)), then we can work with F (A) ⊂ A ⊂ C,

where C is the integral closure of F (A) in a Galois extension containing Qt(A). An analogous
argument shows that

(
SA/F (A)

)
∗ is injective.

For (5), ψ is nuclear on Di(A) by Theorem 3.4.6 and (4).

Theorem 3.4.9 (Lefschetz fixed point formula). Let N(Ā) denote the set of k-homomorphisms
Ā→ k = Fq. Then

#N(Ā) =
n∑
i=0

(−1)i Tr
(
qnF−1

∗ , H i(Ā/K)
)
,

where n = dim Ā.

Remark 7. If φ : Ā → k is a k-homomorphism, then φ is surjective and Ā/ kerφ ∼= k. As
kerφ is a maximal ideal of Ā, it corresponds to a point in the affine variety X = Spec(Ā).
Such a homomorphism is uniquely determined by the maximal ideal x ∈ X defining the kernel,
φ(f) = f(x), so #N(Ā) = #X(Fq).

Since ψ∗ = qnF−1
∗ is nuclear on each H i(Ā/K), the sum

∑n
i=0(−1)i Tr(qnF−1

∗ , H i(Ā/K))
can be written as L(Ā) :=

∑n
i=0(−1)i Tr(ψ,Di(A) ⊗ K), where A is a wcfg algebra obtained

by lifting Ā. Choose elements f̄1, . . . , f̄s ∈ Ā generating the trivial ideal (1) = Ā. Let
Xi = {x ∈ X | f̄i(x) 6= 0} and let fi ∈ A with norm 1 be a lift of f̄i. Then Xi1 ∩ · · · ∩ Xia =

Sp
(
Āf̄i1 ...f̄ia

)
lifts to A〈1/fi1 . . . fia〉†. Sp(A) has a covering of

{
Sp

(
A
〈

1
fi

〉†) ∣∣∣∣ i = 1, . . . , s

}
.

By Tate’s theorem, the sheaf D•( ) ⊗K is acyclic with respect to finite affinoid coverings, so
the Čech complex

0→ ⊕iD•
(
A

〈
1

fi

〉†)
⊗K → ⊕i<jD•

(
A

〈
1

fifj

〉†)
⊗K → . . .

has cohomology group D•(A) ⊗ K at degree 0 and the higher degree cohomology groups are
trivial. There is an exact sequence:

0→ D•(A)⊗K → ⊕iD•
(
A

〈
1

fi

〉†)
⊗K → ⊕i<jD•

(
A

〈
1

fifj

〉†)
⊗K → . . . .

L(Ā) =
∑
i

L
(
Āf̄i
)
−
∑
i<j

L
(
Āf̄if̄j

)
+ . . . .

Hence it suffices to prove the formula or small enough affine subspaces, namely when N(Ā) = 0
and when N(Ā) = 1. Then by induction on the size of the generating set f̄1, . . . , f̄s we will have
N(Ā) = L(Ā).
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Lemma 3.4.10. If N(Ā) = 0, then L(Ā) = 0.

Proof. Let θ : M → M be any Dwork operator. For a ∈ A, let La denote the multiplication on
M by a. Then θ ◦ LF (a) = La ◦ θ. Consider the commutative diagram with exact rows

0 kerLa M M cokerLa 0

0 kerLa M M cokerLa 0

La

θ◦La La◦θ

La

.

The maps induced by θ◦La and La◦θ on ker(La) and coker(La) are 0. Eigenvalues of θ◦La map to
eigenvalues of La◦θ by La so this map is one-to-one and onto. We have Tr(θ◦La) = Tr(La◦θ) for
every a ∈ A. Since θ◦La and La◦θ are nuclear operators, Tr(θ◦LF (a)−a) = Tr(θ◦LF (a)−θ◦a) =
Tr(La ◦ θ − θ ◦ La) = 0 for every a ∈ A.

N(Ā) = 0 implies that the ideal in Ā generated by {āq− ā | ā ∈ Ā} equals Ā. Then the ideal
in A generated by {F (a) − a | a ∈ A} is also a unit ideal, so

∑s
i=1 bi(F (ai) − ai) = 1 for some

ai ∈ A, then θ =
∑s

i=1(θ ◦ Lbi) ◦ LF (ai)−ai and Tr(θ) = 0.

Putting θ = ψ and M = Di(A), we find that L(Ā) = 0.

Lemma 3.4.11. Let A = R〈X1, . . . , Xm, Y 〉†/(fn+1, . . . , fm, gY −1). There exists a residue map
Res : A〈X−1

n 〉† ⊗K → (A/(Xn))⊗K, with the following properties:

(1). Res ◦ ∂
∂Xn

= 0,

(2). every element of A〈X−1
n 〉†⊗K can be written in the form a

Xn
+ ∂F

∂Xn
, where a ∈ A⊗K and

F ∈ A〈X−1
n 〉† ⊗K,

(3). if G ∈ A〈X−1
n 〉† ⊗K and ∂G

∂Xn
∈ A⊗K, then G ∈ A⊗K.

Proof. The completion of A with respect to the ideal (X1, . . . , Xm) is

Â = lim
←
A/(X1, . . . , Xm)s = A[[T1, . . . , Tm]]/(T1 −X1, . . . , Tm −Xm)

and can be viewed as R[[X1, . . . , Xn]]. The derivations ∂
∂Xi

for i = 1, . . . , n on A extend to

Â = R[[X1, . . . , Xn]] and they are derivations of Â/R.

Let R[[X1, . . . , Xn]]〈X−1
n 〉 denote the π-adic completion of R[[X1, . . . , Xn]][X−1

n ]. ∂
∂Xn

ex-

tends in a unique continuous way. A〈X−1
n 〉† is a subring of R[[X1, . . . , Xn]]〈X−1

n 〉 and the two
derivations ∂

∂Xn
coincide on A〈X−1

n 〉†.
G ∈ A〈X−1

n 〉† can be expanded as

G =
∞∑

m=−∞

Gm(X1, . . . , Xn−1)Xm
n ∈ R[[X1, . . . , Xn]]〈X−1

n 〉,

where Gm ∈ R[[X1, . . . , Xn−1]]. ∂G
∂Xn
∈ A implies G ∈ R[[X1, . . . , Xn]] and (3) follows from

A = A〈X−1
n 〉† ∩R[[X1, . . . , Xn]].
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For a ∈ A and k ≥ 1,

a

Xk
n

= − ∂

∂Xn

(
a

(k − 1)Xk−1
n

+
1

(k − 1)(k − 2)Xk−2
n

∂a

∂Xn

+ · · ·+ 1

(k − 1)!Xn

∂k−1a

∂Xk−1
n

)
+

1

(k − 1)!Xn

∂ka

∂Xk
n

For a ∈ A, 1
k!
∂ka
∂Xk

n
∈ (A⊗K)∩R[[X1, . . . , Xn]] = A. Let G =

∑∞
k=1 akX

−k
n ∈ A〈X−1

n 〉†⊗K, then

G = F ′ + aX−1
n , where a =

∑∞
k=1

1
(k−1)!

∂kak
∂Xn

and

F = −
∞∑
k=1

(
ak

(k − 1)Xk−1
n

+
1

(k − 1)(k − 2)Xk−2
n

∂ak
∂Xn

+ · · ·+ 1

(k − 1)!

∂k−1ak
∂Xk−1

n

)
.

The two infinite sums converge to elements a ∈ A ⊗ K and F ∈ A〈X−1
n 〉† ⊗ K, and this

proves (2). The map Res is defined by Res
(

a
Xn

+ ∂F
∂Xn

)
= a mod Xn ∈ (A/(Xn)) ⊗K. Res is

well defined and has the property in (1).

Lemma 3.4.12. If N(Ā) = 1, then there exists f̄ ∈ Ā\{0} such that N(Āf̄ ) = L(Āf̄ ) = 1.

Proof. We can localise at a small enough neighbourhood of the k-valued point of Spec(Ā). By
applying suitable transformations, we can assume Ā has the form

Ā = k[X1, . . . , Xm]ḡ/(f̄n+1, . . . , f̄m),

where n = dim Ā, such that

(1). (0, . . . , 0) is the only k-rational point of Spec(Ā);

(2). f̄i = Xi+ terms with order ≥ 2;

(3). Spec(Ā) is isomorphic to An
k by the identity map restricted to the first n coordinates, so

that
(
∂f̄i
∂xj

)m
i,j=n+1

is invertible in Ā and det

((
∂f̄i
∂xj

)m
i,j=n+1

)
= ḡ.

Put A = R〈X1, . . . , Xm, Y 〉†/(fn+1, . . . , fm, gY − 1) and define the complex C• by the exact
sequence

0→ D•(A)⊗K → D•
(
A〈X−1

n 〉†
)
⊗K → C• → 0.

There is a well-defined degree 1 morphism τ : D•(A/(Xn))⊗K → C• mapping ω to ω̃ ∧ dXn
Xn

in
C•, where ω̃ ∈ D•(A)⊗K has image ω in D•(A/(Xn))⊗K.

Define Res : C• → D•(A/(Xn)) ⊗ K, a morphism of complexes by defining the Res of a
q-form of D•(A〈X−1

n 〉†)⊗K.

Res

 ∑
i1<···<iq<n

aidxi1 ∧ · · · ∧ dxiq +
∑

i1<···<iq−1<n

bidxi1 ∧ · · · ∧ dxiq−1 ∧ dxn


=

∑
i1<···<iq−1<n

Res(bi)dxi1 ∧ · · · ∧ dxiq−1 ∧ dxn ∈ D• (A/(Xn))q−1 ⊗K.
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By construction, Res ◦τ = id.
Suppose ω ∈ Dq(A〈X−1

n 〉†)⊗K satisfies Resω = 0 and dω ∈ Dq+1(A)⊗K. Every Res bi = 0
so bi = ∂Bi

∂Xn
for some Bi ∈ A〈X−1

n 〉† ⊗K. Put

η0 = (−1)q−1
∑

i1<···<iq−1<n

Bidxi1 ∧ · · · ∧ dxiq−1 ,

then
ω − dη0 =

∑
i1<···<iq<n

ãidxi1 ∧ · · · ∧ dxiq .

Since d(ω − dη0) ∈ D•(A)q+1 ⊗ K, all ∂ãi
∂Xn
∈ A, hence all ãi ∈ A. Then ω = dη0 + η1 with

η0 ∈ Dq−1(A〈X−1
n 〉†)⊗K and η1 ∈ Dq(A)⊗K. Hence, Res : Hr(C•)→ Hr−1(D•(A/(Xn))⊗K)

is injective so τ ◦ Res = id on the cohomology groups.
τ induces an isomorphism on the cohomology groups, then L(ĀXn) = N(ĀXn) implies L(Ā) =

L(Ā/(Xn)).
We have N(Ā) = N(Ā/(Xn)) = 1, then the formula follows by induction on the dimension

of Ā.
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Chapter 4

Counting Points with Kedlaya’s
Algorithm

Kedlaya developed an algorithm in [Ked01] to count points on hyperelliptic curves by considering
the Monsky-Washnitzer cohomology of the curves. The algorithm was extended to nondegenerate
curves in [CDV06].

Here we will present Kedlaya’s algorithm, following [Ked01] and [Edi03].
Denote the unramified extension of Qp of degree n = logp q by Qq. This extension is unique

and is obtained by adjoining the primitive (pn − 1)th root of unity ξ, i.e. Qq = Qp[ξ] ⊂ Qalg

and equipped with the extension of the p-adic norm. Denote the ring of q-adic integers by Zq,
i.e. the ring of Witt vectors W (Fq).

4.1 The Cohomology of Hyperelliptic Curves

We consider hyperelliptic curves over a field of characteristic p > 2. Let Q̄(x) be a polynomial
of degree d = 2g + 1 over Fq without repeated roots, so that the closure in the projective plane
of the affine curve y2 = Q̄(x) is a smooth hyperelliptic curve C of genus g.

Note that the algorithm can be generalised to the case where deg Q̄ is even, as shown in
[Har12].

Let C ′ be the affine curve obtained from C by removing the point at infinity and the zeros
of y, i.e. points (α, 0) where α is root of Q̄. Then the coordinate ring of C ′ is

Ā = Fq[x, y, y−1]/(y2 − Q̄(x)).

Pick a lift Q of Q̄ in Zq[x]. Let A = Zq[x, y, y−1]/(y2 −Q(x)) and let

A† = Zq〈x, y, y−1〉†/(y2 −Q(x)) = Zq〈x, y, z〉†/(y2 −Q(x), yz − 1)

be the weak completion of A. A† can be viewed as{
∞∑

n=−∞

Sn(x)yn

∣∣∣∣∣ Sn ∈ Zq[x], degSn ≤ 2g, ordp(Sn) > Cn for some C > 0

}
.

The module of differentials of A† is

D1(A†) :=
(
A†dx+ A†dy + A†dz

)
/
(
A† (2ydy −Q′(x)dx) + A† (zdy + ydz)

)
= A†dx.

27
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The de Rham complex D•(A†) is

0→ A†
d−→ D1(A†)→ 0.

The de Rham cohomology groups H i(Ā/Zq) = 0 for i > 1 so we only have to consider the groups
H0(Ā/Zq) and H1(Ā/Zq). H0(Ā/Zq) = ker d, H1(Ā/Zq) = D1(A†)/ im d = A†dx/ im d. The
Monsky-Washnitzer cohomology groups are H i(Ā/Qq) = H i(Ā/Zq)⊗Zq Qq.

Definition 4.1.1 (hyperelliptic involution). The hyperelliptic involution is the map (x, y) 7→
(x,−y) on C.

Definition 4.1.2 (cohomologous). If a, b have the same image in cohomology, we say a and b
are cohomologous and write a ≡ b.

Now we look at the structure of the de Rham cohomology group H1(Ā/Zq). We can consider
elements in A†dx as representatives of elements in the group, quotienting by im d.

Lemma 4.1.3. The de Rham cohomology of A splits into eigenspaces under the hyperelliptic in-
volution, a positive eigenspace H1(Ā/Zq)+ generated by {xidx/y2 | i = 0, . . . , 2g} and a negative
eigenspace H1(Ā/Zq)−generated by {xidx/y | i = 0, . . . , 2g − 1}.

Proof. Any form in H1(Ā/Zq) can be written as

∞∑
n=−∞

Sn(x)yndx =
∞∑
m=0

(S2m−2(x) + yS2m−1(x))y2m−2dx+
∞∑
n=3

S−n(x)dx

yn

=
∞∑
m=0

S2m−2(x)Q(x)mdx

y2
+
∞∑
m=0

S2m−1(x)Q(x)mdx

y
+
∞∑
n=3

S−n(x)dx

yn

where degSn ≤ 2g.
Consider a term R(x) := S−n(x)dx/yn where n > 2. Q(x) has no repeated roots, so we can

find polynomials A(x) and B(x) such that R(x) = A(x)Q(x) +B(x)Q′(x). Since

d

(
B(x)

ys−2

)
=
B′(x)dx

ys−2
− (s− 2)B(x)dy

ys−1
≡ 0

and 2ydy = Q′(x)dx, we have

R(x)dx

ys
= (A(x)Q(x) +B(x)Q′(x))

dx

ys
=
A(x)dx

ys−2
+
B(x)Q′(x)dx

ys
=
A(x)dx

ys−2
+

2B(x)dy

ys−1
.

The first reduction relation

R(x)dx

ys
≡
(
A(x)dx+

2B′(x)

s− 2

)
dx

ys−2
(4.1)

can consolidate the terms to n = 1 and n = 2 terms.
Now rewriting the form,

∞∑
n=−∞

Sn(x)yndx ≡ R1(x)dx

y
+
R2(x)dx

y2
.
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If R1(x) has degree m ≥ 2g, take P (x) = xm−2g, then

d(2P (x)y) = 2P ′(x)ydx+ 2P (x)dy = (P (x)Q′(x) + 2P ′(x)Q(x))
dx

y
≡ 0.

The second reduction relation is

(P (x)Q′(x) + 2P ′(x)Q(x))
dx

y
≡ 0. (4.2)

The term (P (x)Q′(x) + 2P ′(x)Q(x)) has degree m and leading term (2g + 1) + 2(m − 2g) =
2m − 2g + 1 6= 0 so a suitable multiple can be subtracted from R1(x) to reduce its degree to
m− 1. Cary out this process repeatedly reduces R1(x) to degree ≤ 2g − 1.

If degR2 ≥ 2g + 1, subtracting a multiple of dx = Q(x)dx/y2 reduces R2 to degree ≤
degQ− 1 = 2g.

Note that the basis of the de Rham cohomology of A is also a basis of the Monsky-Washnitzer
cohomology and we can view it as changing the base field from Zq to Qq.

Remark 8. Given a polynomial R(x) = r2gx
2g+ · · ·+r0 of degree ≤ 2g, we can find polynomials

A(x) and B(x) with degA < 2g and degB < 2g + 1, such that R(x) = A(x)Q(x) + B(x)Q′(x).
Namely, write Q(x) = x2g+1 + c2gx

2g + · · ·+ c0 and define a (4g + 1)× (4g + 1) matrix with the
coefficients of Q(x) and Q′(x)

T :=



c0 c1

c1

. . . 2c2

. . .
. . . c0

. . .
... c1

... c1

2c2

(2g + 1)c2g+1

c2g+1

...
. . .

...
. . .

c2g+1 (2g + 1)c2g+1



,

and a vector v := (r0, . . . , r2g, 0, . . . , 0). Note that columns of T are linearly independent since
Q and Q′ are coprime. Find T−1v = (a0, . . . , a2g−1, b0, . . . , b2g) by solving the system of linear
equations, for example applying the Cramer’s rule, then we have A(x) = a2g−1x

2g−1 + · · · + a0

and B(x) = b2gx
2g + · · ·+ b0 that satisfy R(x) = A(x)Q(x) +B(x)Q′(x).

4.2 Consequences of the Weil Conjectures

As special case of the Weil conjectures, proved by Weil, we have for a smooth curve C of genus
g over a finite field Fq, that

Z(C/Fq;T ) =
P (T )

(1− qT )(1− T )
,



30 CHAPTER 4. COUNTING POINTS WITH KEDLAYA’S ALGORITHM

where P (T ) =
∏

j(1 − αjT ) = a2gT
2g + a2g−1T

2g−1 + · · · + 1 ∈ Z[T ] with degree 2g. From the
power series expansion of the quotient, we can see that for any s > 0,

qs + 1−#C(Fqs) =

2g∑
j=1

αsj .

Moreover, αjαg+j = q for j = 1, . . . , g, |αj|∞ = q1/2 for j = 1, . . . , 2g and qg−iai = a2g−i for
i = 0, . . . , 2g. See Theorem 5.15 and Corollary 5.16 in [Sti09]. The relationship qg−iai = a2g−i
implies that it is enough to determine a1, . . . , ag.

We are interested in finding P (T ) explicitly, so it would be helpful to find a bound for the
coefficients.

Theorem 4.2.1. |ai|∞ ≤
(

2g
i

)
qi/2 ≤ 22gqg/2 for i = 1, . . . , g.

Proof. We have

|ai|∞ = |
∑

j1<···<ji

αj1 . . . αji |∞ ≤
∑

j1<···<ji

|αj1 . . . αji |∞ =

(
2g

i

)
qi/2 ≤ 22gqi/2 ≤ 22gqg/2.

Corollary 4.2.1.1 (Hasse-Weil Bound). Let C be as above, then

|q + 1−#C (Fq) | ≤ 2gq1/2.

4.3 Applying the Lefschetz Fixed Point Formula

We can apply Lefschetz fixed point formula to compute the zeta function of C.

Lemma 4.3.1. We have

qs + 1−#C (Fqs) = Tr
(
(qF−1

∗ )s, H1(Ā/Qq)
−) .

Proof. Let C̃ ′ denote the quotient of C ′ under the hyperelliptic involution. Apply the Lefschetz
fixed point formula to C ′ and C̃ ′, we have the following equations

#C ′(Fqs) = Tr((qF−1
∗ )s, H0(Ā/Qq))− Tr(qiF−i∗ , H

1(Ā/Qq)), (4.3)

#C̃ ′(Fqs) = Tr((qF−1
∗ )s, H0(Ā/Qq)

+)− Tr(qiF−i∗ , H
1(Ā/Qq)

+). (4.4)

#C(Fqs)− {zeros of y over Fqs}
= #C ′(Fqs)
= Tr((qF−1

∗ )s, H0(Ā/Qq))− Tr((qF−1
∗ )s, H1(Ā/Qq)) by (4.3)

= Tr((qF−1
∗ )s, H0(Ā/Qq))− Tr((qF−1

∗ )s, H1(Ā/Qq)
+)− Tr((qF−1

∗ )s, H1(Ā/Qq)
−)

since H1(Ā/Qq) = H1(Ā/Qq)
− ⊕H1(Ā/Qq)

+

= qs − Tr((qF−1
∗ )s, H1(Ā/Qq)

+)− Tr((qF−1
∗ )s, H1(Ā/Qq)

−)

= Tr((qF−1
∗ )s, H0(Ā/Qq)

+)− Tr((qF−1
∗ )s, H1(Ā/Qq)

+)− Tr((qF−1
∗ )s, H1(Ā/Qq)

−)

= #C̃ ′(Fqs)− Tr((qF−1
∗ )s, H1(Ā/Qq)

−) by equation 4.4

= qs + 1− {zeros of y over Fqs} − Tr((qF−1
∗ )s, H1(Ā/Qq)

−).
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We now have

Tr((qF−1
∗ )s, H1(Ā/Qq)

−) =

2g∑
j=1

αsj ,

for all s > 0, so αj are eigenvalues of qF−1
∗ in H1(Ā/Qq)

− and q/αj are eigenvalues of F∗. Since
αjαg+j = q, the αj are eigenvalues of F∗ and are the roots of the characteristic polynomial of
the matrix of F−1

∗ on H1(Ā/Qq)
−. If m is the the matrix of the Frobenius F∗ on H1(Ā/Qq)

−

with respect to a basis, the characteristic polynomial χ(T ) of m has roots α0, . . . , α2g. Then
the reciprocal polynomial P (T ) = T 2gχ (1/T ) is the required polynomial. By Theorem 4.2.1, we
can bound the coefficients of the characteristic polynomial. If χ(T ) = T 2g + a1T

2g−1 + · · ·+ a2g,
then |ai|∞ ≤ 22gqg/2 for i = 1, . . . , g, so ai only have to be computed to finite p-adic digits.

4.4 Lifting the Frobenius

We can define explicitly a lift of the q-Frobenius F∗ on H1(Ā/Qq)
−.

Lift the p-Frobenius to an endormorphism σ on A†. Define σ as the canonical Witt vector
Frobenius on Zq, i.e. (a0, a1, . . . ) 7→ (ap0, a

p
1, . . . ), where ai ∈ Fq. Extend this to Zq[x] by sending

x 7→ xp, and then to satisfy (yσ)2 = (y2)σ = Q(x)σ = Q(x)σ(y2/Q(x))p = y2pQ(x)σ/Q(x)p, send

y 7→ yp
(
Q(x)σ

Q(x)p

)1/2

= yp
(

1 +
Q(x)σ −Q(x)p

Q(x)p

)1/2

,

y−1 7→ (yσ)−1 = y−p
(

1 +
Q(x)σ −Q(x)p

Q(x)p

)−1/2

=
∞∑
k=0

(
−1/2

k

)
(Q(x)σ −Q(x)p)k

yp(2k+1)
.

Further extend to H1(Ā/Qq)
− by setting dx 7→ pxp−1dx. Define F∗ = σlogp q, then F∗ is a lift of

the q-power Frobenius.
Note that a basis for H1(Ā/Qq)

− is found in Lemma 4.1.3. We will compute explicitly the
action of F∗ with respect to this basis.

4.5 Precision

We will find (xidx/y)σ, then reduce using relations (4.1) and (4.2) to obtain a cohomologous
expression as a linear combination of the basis {xidx/y | i = 0, . . . , 2g − 1}. The reduction
process is equivalent to repeatedly subtracting suitable multiples of d (xiy2j+1), i ≤ 0, j ∈ Z.
Precision is lost when some division by power of p is carried out in the reduction algorithm. We
will need to measure the loss of precision, to find the number of p-adic digits needed to begin
the algorithm.

Lemma 4.5.1. Let A(x) ∈ Zq[x] be a polynomial of degree at most 2g. For some m > 0,
consider the reduction of ω := A(x) dx

y2m+1 by (4.1),

ω := A(x)
dx

y2m+1
= B(x)

dx

y
+ df,

for some B(x) ∈ Qq[x] with degB ≤ 2g − 1 and f =
∑m−1

k=−1
Fk(x)
y2k+1 where each degFk ≤ 2g, then

pblogp(2m−1)cB(x) ∈ Zq[x].
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Proof. Let r0, . . . , r2g be the roots of Q in the splitting field of Q, and let T0 = (r0, 0), . . . , T2g =
(r2g, 0) be the corresponding points on the curve y2 = Q(x), then f has poles at T0, . . . , T2g and
possibly at infinity. We have ri ∈ Zqr for some r. Let Ri be the completion of the local ring of
Zqr [x, y]/(y2−Q(x)) at Ti, i.e. the localisation of Zqr [x, y]/(y2−Q(x)) with respect to the ideal
{f ∈ Zqr [x, y] | f(ri, 0) = 0}, then the maximal ideal of Ri is generated by y. x can be written
as a power series in y with integral coefficients, so Ri = Zqr [[y]].

Let Ki = Qt(Ri). The image of df in the module of differentials D1(Ki/Zqr) can be written
as

m−1∑
k=−∞

aikdy

y2k+2
,

where aik ∈ Zqr for k ≥ −1 since they coincide with the corresponding coefficients in the
expansion of ω. The map d commutes with the passage to the completed local ring Ri, so the
image of f in Ki is

m−1∑
k=−∞

−aik
(2k + 1)y2k+1

.

Now f −
∑m−1

k=j+1
Fk(x)
y2k+1 =

∑j
k=−1

Fk(x)
y2k+1 has a pole of order at most 2j+1 at each Ti, and its image

in Ki is
Fj(ri)

y2j+1 + . . . .

Take n = pblogp(2m−1)c, then naik/(2k + 1) is integral for i = 0, . . . , 2g and k = −1, 0, . . . ,m−
1. Now nFm−1(ri) = −nai,m−1/(2m− 1) is integral for i = 0, . . . , 2g, and since the ri are
distinct mod p, nFm−1(x) is integral. Apply the same argument to nf −nFm−1(x), nFm−2(x) =
−nai,m−2/(2m− 3) is integral and so on. Hence nf is integral so nB(x) is integral.

Lemma 4.5.2. Let A(x) ∈ Zq[x] of degree at most 2g. For some m ≥ 0, consider the reduction
by (4.2),

ω := A(x)y2mdx

y
= B(x)

dx

y
+ df,

for some B(x) ∈ Qq[x] with degB ≤ 2g − 1 and f = Cy2m+1 +
∑m−1

k=0 Fk(x)y2k+1 where C ∈ Qq

and each degFk ≤ 2g, then pblogp(d(2m+1))cB(x) ∈ Zq[x].

Proof. Consider the local ring at infinity. We can apply a birational transformation (x, y) 7→
(z, w) = (xg/y, 1/y), then the point at infinity is mapped to (0, 0). x and y can be expressed
as power series in z. Let v∞ denote the valuation at the unique pole ∞ of y, i.e., the order
of z in the power series in z, then v∞(x) = −2, v∞(y) = −d since y2 = Q(x) and degQ = d.
v∞(dx) = −3, v∞(dx/y) = d− 3, v∞(f) ≥ min{−d(2m+ 1),−2(2g)− d(2m− 1)} = −d(2m+ 1)
and v∞(B(x)dx/y) ≥ −2(2g − 1) + (d− 3) = −d+ 1.

The hyperelliptic involution maps z to −z. Since v∞(df) ≥ −d(2m+ 1)− 1, the image of df
is ∑

k≥−d(2m+1)−1

akz
kdz,

where ak = 0 if k is odd. We have v∞(B(x)dx/y) ≥ −d + 1, so ak ∈ Zqr for k ≤ −d since they
correspond to the coefficients in the expansion of ω. The image of f is∑

k≥−d(2m+1)−1

akz
k+1

k + 1
.
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Take n = pblogp(d(2m+1))c, then nak/(k + 1) ∈ Zq if k ≤ −d. As v∞(xiyj) are distinct and
≤ −d for 0 ≤ i < d and j > 0, f is integral.

Since we only need to find a1, . . . , ag and |ai|∞ ≤ 22gqg/2 for i = 1, . . . , g, it suffices to
compute the action of F∗ on a suitable basis of H1(Ā/Qq)

− modulo pN for some N such that
pN ≥ 2

(
22gqg/2

)
, i.e. N ≥ gn/2 + (2g + 1) logp 2, where n = logp q.

Let pE(x) := Q(x)σ − Q(x)p and d = degQ = 2g + 1. The action of the p-Frobenius σ on
differentials xidx/y for i = 0, . . . , 2g − 1,(

xidx

y

)σ
=
pxip+p−1dx

yp

(
1 +

pE(x)

y2p

)−1/2

=
∞∑
k=0

(
−1/2

k

)
pk+1xip+p−1E(x)kdx

yp(2k+1)
.

Note that degE ≤ pd− 1.
For fixed i and k, write(

−1/2

k

)
xip+p−1E(x)kdx

yp(2k+1)
:=

(p(2k+1)−1)/2∑
m=c

Am(x)
dx

y2m+1
,

where degAm ≤ 2g and

c :=
p(2k + 1)− 1

2
− b ip+ p− 1 + k degE

d
c.

Since

ip+ p− 1 + k degE

d
≤ (d− 2)p+ p− 1 + k(pd− 1)

d

=

(
1− 1

d

)
p− 1

d
+ k

(
p− 1

d

)
< (k + 1)p,

we have

c ≥ p(2k + 1)− 1

2
− ((k + 1)p− 1) =

p(2k + 1) + 1

2
− (k + 1)p =

1

2
(1− p).

The reduction of m > 0 terms by (4.1) is integral upon multiplication by pblogp(p(2k+1)−2)c by
Lemma 4.5.1. Since

(−2c+ 1) d <

(
−2

(
1

2
(1− p)

)
+ 1

)
d = pd,

the reduction of m < 0 terms by (4.2) is integral upon multiplication by pblogp(pd)c by Lemma
4.5.2.

We have the reduction (
−1/2

k

)
xip+p−1E(x)kdx

yp(2k+1)
≡ B(x)

dx

y
,

where degB(x) ≤ 2g − 1.

The reduction of
(−1/2

k

)
pk+1xip+p−1E(x)kdx

yp(2k+1) is divisible by pk+1−max{blogp(p(2k+1)−2)c,blogp(pd)c}. We
only have to consider terms up k = M − 1, where M is the smallest integer such that M −
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max{blogp(2M+1−2/p)c, blogp dc} ≥ N and the other terms will not contribute to the reduction
modulo pN . Note that blogp(2M+1−2/p)c = blogp(2M−1)c since p is odd, so M is the smallest
integer such that M −max{blogp(2M − 1)c, blogp dc} ≥ N .

We have min{k−max{blogp(2k− 1)c, blogp dc} | k ≥ 0} = −blogp dc so the matrix of σ with
respect to the Zq-basis {xidx/y | i = 0, . . . , 2g − 1} does not necessarily have coefficients in Zq.
We will need extra precision of blogp(2g − 1)c by [Edi03].

Hence, to get N significant digits after reduction, we need to start with precision

N1 = N + max{blogp(2M − 1− 2/p)c, blogp dc}+ 1 + blogp(2g − 1)c
= N + max{blogp(2M − 3)c, blogp dc}+ 1 + blogp(2g − 1)c.

Remark 9. Alternatively, we could take a basis on which the matrix has integral entries. The
existence of such a basis is shown in [Edi03]. Namely, let z = xg/y, any basis of the submodule
of the Zq-span of {xidx/y | i = 0, . . . , 2g− 1} whose z-adic expansions can be integrated over Zq
gives an integral matrix.

Remark 10. min{k − max{blogp(2k − 1)c, blogp dc} | k ≥ 0} = −blogp dc = 0 if p > d so the
matrix is always integral if p > d. It was shown in [Har12] that if p ≤ d, using an alternative
basis {xidx/y3 | i = 0, . . . , 2g − 1} of H1(Ā/Qq)

− instead will guarantee an integral matrix.

Remark 11. For some small q and d, namely, at least for q ≤ 17 and d ≤ 25, max{blogp(2M −
3)c, blogp dc} = blogp(2M − 3)c. Specifically, when q ≤ 13, and if 2M − 3 < d, i.e. M ≤ g + 1,

M −max{blogp(2M − 1)c, blogp dc} ≥ N = dgn/2 + (2g + 1) logp 2e,

g + 1 ≥M ≥ max{blogp(2M − 1)c, blogp dc}+ dgn/2 + (2g + 1) logp 2e
≥ blogp (max{2M − 1, 2g + 1}c) + dg/2 + (2g + 1) logp 2e
= blogp(2g + 1)c+ dg/2 + (2g + 1) log13 2e since 2M − 1 ≤ 2g + 1

≥ blogp(2g + 1)c+ g + 1 since p ≤ 13,

which is only possible if logp(2g + 1) < 1. By checking the remaining cases, we see that in
fact 2M − 3 ≥ d always holds for q ≤ 13 so the formula giving N1 can be simplified as N1 =
N + blogp(2M − 3)c + 1 + blogp(2g − 1)c. The function adjusted prec(p, prec) in Sage uses
the formula N1 = N + blogp(2M − 3)c+ 1, which should hold when 2g − 1 ≤ q = p ≤ 13.

Remark 12. If we start with a curve C : y2 = Q(x) over Q, we have to make sure it has good
reduction modulo p, i.e. its reduction Q̄ has no repeated roots over Fp so that y2 = Q̄(x) defines
a smooth curve. This can be done by checking the p does not divide the discriminant of Q.

Remark 13. There were problems in the original precision estimate in [Ked01], which were
pointed out by Edixhoven and corrections were made in the corresponding errata. The corrections
were explained in [Edi03] but the formula stated for N1 was inaccurate. For example, we consider
the elliptic curve y2 = x3 + x + 1 with prime p = 5. We need to obtain the matrix modulo 52.
The formula in [Edi03] would give N1 = 2. If we carry out the computation with a precision of
2 digits, we would obtain the matrix (

15 18
0 22

)
mod 52.
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However, if we compute with a precision of 3 digits, the resulting matrix would be(
0 18
15 22

)
mod 52.

This shows that it is not sufficient to use 2 digits in the computation. This example is explained
in Section 4.7. Therefore, instead of restating the formulae in [Edi03], the formulae here were
deduced following the idea in [Edi03].

4.6 Kedlaya’s Algorithm

4.6.1 Initialisation

Let N := dgn/2 + (2g + 1) logp 2e; this is the precision required to recover the characteristic
polynomial of Frobenius. Let M be the smallest integer such that

M −max{blogp(2M − 1)c, blogp dc} ≥ N,

which is the number of terms to be computed in the expansion of (xidx/y)σ. Then

N1 = N + max{blogp(2M − 3)c, blogp dc}+ 1 + blogp(2g − 1)c

is the precision to begin as required by the reduction algorithm.

4.6.2 Computing the Frobenius on Differentials

Compute the action of the Frobenius on H1(Ā/Qq)
−. Compute the reduction of (xidx/y)σ for

i = 0, . . . , 2g − 1 up to modulo pN1 , i.e. with precision of N1 digits.
For each fixed i,(

xidx

y

)σ
=

M−1∑
k=0

(
−1/2

k

)
pk+1xip+p−1E(x)kdx

yp(2k+1)
+ · · · =

(p(2M−1)−1)/2∑
j=0

Fj(x)dx

y2j+1
mod pN1

where Fj are polynomials and degFj ≤ 2g for j ≥ 1.

Remark 14. In practice, to avoid any loss in precision during the reduction, the sum is first
coerced into an expression over Z, then the reduction is carried out over Q. There is no need
to keep track of the precision during the reduction, since we know that the expression after the
reduction will be correct modulo pN by the precision estimates.

Let K := (p(2M − 1)− 1)/2. Set SK(x) = FK(x) and compute a series of polynomials Sk(x)
inductively for k = K − 1, K − 2, . . . , 0. Given Sk+1(x), find polynomials Ak+1 and Bk+1 such
that Ak+1Q+Bk+1Q

′ = Sk+1, then set Sk(x) = Fk(x) +Ak+1(x) + 2B′k+1(x)/(2k+ 1). Note that
2B′k+1/(2k + 1) denotes any polynomial over Zq/(pM) which when multiplied by 2k + 1 gives
2B′k+1. By the reduction relation (4.1),

Sk(x)dx

y2k+1
=

(
Fk(x) + Ak+1(x) +

2B′k+1(x)

2k + 1

)
dx

y2k+1
≡ Fk(x)dx

y2k+1
+
Sk+1(x)dx

y2k+3
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K∑
j=0

Fj(x)dx

y2j+1
≡ SK(x)dx

y2K+1
+

K−1∑
j=0

(
Sj(x)dx

y2j+1
− Sj+1(x)dx

y2j+3

)
=
S0(x)dx

y
.

(xidx/y)σ can be reduced to (S0(x))dx/y.
By construction, F0 can have degree up to 2pg−1 so S0 can have degree up to 2pg−1. Reduce

S0 using the relation (4.2) xk−1Q′(x)+2(k−1)xk−2Q(x) for k = degS0−2g+1, degS0−2g, . . . , 1,
obtaining G(x) with degree ≤ 2g. Then (xidx/y)σ is cohomologous to G(x)dx/y mod pN .

4.6.3 Computing the Characteristic Polynomial

We have (xidx/y)σ reduced in the form Gi(x)dx/y where degGi ≤ 2g − 1 for i = 0, . . . , 2g − 1.
Write Gj(x) in the form

∑2g−1
i=0 aijx

i, each aij is computed up to modulo pN . Extract the matrix
m := {aij}2g−1

i,j=0. m approximates the action of σ on H1(Ā/Zq)−. Compute m′ = mn. Determine
the characteristic polynomial of m′, det(T · id−m′) = T 2g + c1T

2g−1 + · · ·+ c2g ∈ Zq[T ].
Now we recover the characteristic polynomial of the Frobenius from the first g coefficients.

For 1 ≤ i ≤ g, let ai be the unique integer with |ai| ≤ 22gqg/2 such that ai ≡ ci mod pN . For g <
i ≤ 2g, let ai := qi−ga2g−i. Then the characteristic polynomial is χ(T ) = T 2g+a1T

2g−1 + · · ·+a2g

and the numerator of the zeta function is the reciprocal polynomial P (T ) = T 2gχ(1/T ).

4.7 Explicit Example

Let us apply the algorithm to an example.
Let Q(x) := x3 + x + 1 and consider the elliptic curve C : y2 = Q(x) and prime p = 5. Q

has discriminant −31, which is not divisible by 5, so it has no repeated roots modulo 5, i.e. C
has good reduction at 5.

C has genus g = 1, the precision required to recover the characteristic polynomial of the
Frobenius is N = 2 and the number of terms to be considered in the series expansion of (xidx/y)σ

is M = 3. N1 = 3 is the precision required for the computation. See Appendix for the step-by-
step implementation in Sage.

We have(
dx

y

)σ
=
(25x+ 50

y15
+

75x2 + 100x+ 25

y13
+

50x2 + 50x+ 100

y11
+

75x+ 50

y9
+

50x2 + 50x

y7

+
70x2 + 70x+ 25

y5
+

5x

y3

)
dx mod 53,

(
xdx

y

)σ
=
(100x2 + 100x+ 75

y15
+

25x2 + 50x+ 75

y13
+

50x2 + 100x+ 100

y11
+

25x2 + 75x+ 75

y9

+
75x2 + 100

y7
+

85x2 + 90x+ 50

y5
+

15x2 + 30x+ 85

y3
+

5x3 + 65x+ 65

y

)
dx mod 53.

First consider the reduction of (dx/y)σ. Let Fk be the polynomial in the term Fk(x)dx/y2k+1,
then compute the sequence Sk for k = 7, 6, . . . , 0.

Set S7(x) := F7(x) = 25x + 50, and find Sk(x) for each k = 6, 5, . . . , 0. Find polynomials
Ak+1, Bk+1 such that Ak+1Q+Bk+1Q

′ = Sk+1 and set Sk(x) := Fk + Ak+1 + 2B′k+1/(2k + 1).
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k Fk Sk Ak Bk mod
7 25x+ 50 25x+ 50 25x 75x2 + 50 53

6 75x2 + 100x+ 25 75x2 + 100x+ 25 75x+ 100 100x2 + 50x+ 50 53

5 50x2 + 50x+ 100 50x2 + 25x+ 50 75x+ 50 100x2 + 25x 53

4 75x+ 50 50 100x+ 100 50x2 + 50x+ 75 53

3 50x2 + 50x 50x2 + 25 100x+ 100 50x2 + 50x+ 50 53

2 70x2 + 70x+ 25 70x2 + 10x+ 20 5x+ 20 15x2 + 10x 52

1 5x 5x+ 10 5x 15x2 + 10 52

0 0 15x 52

We have (
dx

y

)σ
≡ 15x

dx

y
mod 52.

Now reduce (xdx/y)σ.

k Fk Sk Ak Bk mod
7 100x2 + 100x+ 75 100x2 + 100x+ 75 75x+ 100 100x2 + 50x+ 100 53

6 25x2 + 50x+ 75 25x2 + 50x 75 100x+ 50 53

5 50x2 + 100x+ 100 50x2 + 100x 25 75x+ 100 53

4 25x2 + 75x+ 75 25x2 + 75x+ 75 75x 100x2 + 75 53

3 75x2 + 100 75x2 + 25x+ 100 75x+ 50 100x2 + 25x+ 50 53

2 85x2 + 90x+ 50 85x2 + 20x+ 10 20x 10x2 + 10 52

1 15x2 + 30x+ 85 15x2 + 5x+ 10 20x+ 15 10x2 + 20x+ 20 52

0 5x3 + 65x+ 65 5x3 + 20 52

and (
xdx

y

)σ
≡ (5x3 + 20)

dx

y
mod 53.

We still have to reduce the term 5x3dx/y in (xdx/y)σ.
The relation d(2xy) = (xQ′(x)+2Q)dx/y gives (5x3 +3x+2)dx/y ≡ 0 mod 53. Subtracting

from (5x3 + 20)dx/y, we get (
xdx

y

)σ
≡ (22x+ 18)

dx

y
mod 52.

We obtain the matrix of the Frobenius with respect to the basis {dx/y, xdx/y}:

m =

(
0 18
15 22

)
mod 52.

The characteristic polynomial of the matrix is

χ(t) = t2 + 3t+ 5 mod 52.

The coefficients of the polynomial in the numerator of the zeta function are bounded by

22gpg/2 = 4× 51/2 < 9,

so we do not have to adjust by multiples of 52. We have

Z(C/F5;T ) =
5T 2 + 3T + 1

(1− T )(1− 5T )
.
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Chapter 5

Counting Points in Average Polynomial
Time

To gather data more efficiently for the generalised Sato-Tate conjecture for abelian varieties,
which relates to the distributions of the numerator of the zeta function of curves modulo primes,
modifications to Kedlaya’s algorithm can be helpful. We would like to compute the matrix of
Frobenius more quickly for a fixed curve and large primes p.

Harvey presented an optimisation of Kedlaya’s algorithm, which is more efficient for fixed
g and large p in [Har07]. In [Har14], Harvey further developed an algorithm to compute the
zeta function simultaneously for all primes p < N given Q and a fixed integer N , in average
polynomial time. We will present this algorithm here. Computations were done using this
algorithm by Harvey and Sutherland [HS14], producing substantial results.

5.1 Setup

We begin with a hyperelliptic curve C : y2 = Q(x) over Q. Take C ′ by removing the point at
infinity and the Weierstrass points. The coordinate ring is A = Q[x, y, y−1]/(y2 − Q(x)). Let
Ω := D1(A), Ω− the negative eigenspace under the hyperelliptic involution. We will keep track of
p by denoting Ap = Zp[x, y, y−1]/(y2−Q(x)), A†p = Zp〈x, y, y−1〉†/(y2−Q(x)), Ωp := D1(A†p) and
Ω−p the negative eigenspace. There is a natural map Ω− → Ω−p . σp is the lift of the p-Frobenius
on Ω−p .

In Kedlaya’s algorithm, we compute the action of σp in Ω−p /d(A†p) with respect to the basis
{xidx/y | i = 0, . . . , 2g−1}. Here, we use the same basis, but we view σp(x

idx/y) as elements in
Ω− by truncating the series expansion of σp(x

idx/y), since we only require finite p-adic precision.
Then the reduction is done in Ω−/d(A).

A different series expression is considered so that the number of terms does not depend on
p.

Lemma 5.1.1. Let µ ≥ 1 and assume that p > (2µ − 1)(2g + 1). Let Cj,r ∈ Z such that

Q(x)j =
∑(2g+1)j

r=0 Cj,rx
r. For 0 ≤ j < µ, let

αj =

µ−1∑
k=j

(−1)j+k
(
−1/2

k

)(
k

j

)
∈ Z

[
1

2

]
.

39
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For a, b ≤ 1, with b odd, let Ua,b
p denote the reduction of xpa−1y−pb+1dx/y in Ω−. Then for

0 ≤ i < 2g,

σp

(
xidx

y

)
≡

µ−1∑
j=0

(2g+1)j∑
r=0

pαjCj,rU
i+r+1,2j+1
p mod pµ in Ω−p .

Proof. Let pE(x) := Q(x)σ −Q(x)p. Recall

σp

(
xidx

y

)
=

M−1∑
k=0

(
−1/2

k

)
pk+1xip+p−1E(x)kdx

yp(2k+1)
mod pN1 ,

whereM is the smallest integer such thatM−blogp(2M−1)c ≥ µ andN1 = µ+blogp(2M−3)c+1.
We have M = µ and N1 = µ+ 1, so

σp

(
xidx

y

)
≡

µ−1∑
k=0

(
−1/2

k

)
pk+1xip+p−1E(x)kdx

yp(2k+1)
mod pµ.

We compute

µ−1∑
k=0

(
−1/2

k

)
pxip+p−1(Q(x)σ − y2p)kdx

yp(2k+1)

=

µ−1∑
k=0

(
−1/2

k

)
pxip+p−1

yp(2k+1)

k∑
j=0

(
k

j

)
(−1)k−j(Q(x)j)σy2p(k−j)dx

=

µ−1∑
k=0

(
−1/2

k

)
pxip+p−1

yp(2k+1)

k∑
j=0

(−1)j+k
(
k

j

)(2g+1)j∑
r=0

Cj,rx
r

σ

y2p(k−j)dx

=

µ−1∑
k=0

(
−1/2

k

)
pxip+p−1

k∑
j=0

(2g+1)j∑
r=0

(−1)j+k
(
k

j

)
Cj,rx

rpy−p−2pjdx

=

µ−1∑
k=0

k∑
j=0

(2g+1)j∑
r=0

p(−1)j+k
(
−1/2

k

)(
k

j

)
Cj,rx

p(r+i+1)−1y−p(2j+1)dx

=

µ−1∑
j=0

(2g+1)j∑
r=0

µ−1∑
k=j

p(−1)j+k
(
−1/2

k

)(
k

j

)
Cj,rU

i+r+1,2j+1
p .

Lemma 5.1.2. Let F,G ∈ Z[x] be nonzero and coprime. Let m = degF , n = degG. Let
δ ∈ Z be the resultant of F and G so δ 6= 0. Then there exist polynomials Ri, Si ∈ Z[x], for
0 ≤ i < m+ n with FRi +GSi = δxi, degRi < n and degSi < m.
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Proof. Define a (m+ n)× (m+ n) matrix with entries of coefficients of F (x) and G(x)

T :=



F0 G0

F1

. . . G1

. . .
...

. . . F0

...
. . . G0

Fm F1 Gn G1

. . .
...

. . .
...

F2g+1 Gn


.

T can be viewed as a map in the space of polynomials Pn × Pm → Pm+n given by (R, S) 7→
FR + GS. Since δ = detT by definition, applying Cramer’s rule will give us the coefficients of
the required polynomials Ri and Si.

5.2 Reduction

We will take δ as the resultant of Q(x) and Q′(x), which is also the discriminant of Q(x).
For s ≥ 0 and t ∈ Z, define a collection of Q-subspaces, denote

Ws,t := {F (x)xsy−2tdx/y | F ∈ Q[x], degF ≤ 2g} ⊆ Ω−,

and

W−1,t : = {F (x)x−1y−2tdx/y | F ∈ Q[x], degF ≤ 2g, F (0) 6= 0}
= {F (x)y−2tdx/y | F ∈ Q[x], degF ≤ 2g − 1} ⊆ Ω−.

Note that W−1,0 is the space spanned by {xidx/y | i = 0, . . . , 2g − 1}. The treatment here
differs from Kedlaya’s algorithm. The reduction in cohomology is represented by matrices
with respect the natural basis of Ws,t. Linear maps are applied repeatedly to reduce each
xp(i+r+1)−1y−p(2j+1)+1dx/y ∈ Wp(i+r+1)−1,(p(2j+1)−1)/2 in the expression of σp(x

idx/y) to

U i+r+1,2j+1
p ∈ W−1,0.

A fast matrix multiplying algorithm can be adapted the to speed up the computation.

Lemma 5.2.1 (horizontal reduction). Let s ≥ 0, t ∈ Z and let DH(s, t) = (2g+1)(2t−1)−2s ∈
Z[s, t], then DH(s, t) 6= 0. There exists a matrix MH ∈ GL2g+1(Z[s, t]) such that the map
DH(s, t)−1MH(s, t) reduce w ∈ Ws,t to a cohomologous differential in Ws−1,t and the entries of
MH have degree at most 1.

Proof. We have

d(xsy−2t+1) = sxs−1y−2t+1dx− (2t− 1)xsy−2tdy =

(
sQ(x)− 2t− 1

2
xQ′(x)

)
xs−1y−2tdx

y
.

Substitute with Q(x) = x2g+1 + P (x), where P ∈ Z[x] has degree at most 2g,

xs+2gy−2tdx

y
≡ 2sP (x)− (2t− 1)xP ′(x)

DH(s, t)
xs−1y−2tdx

y
.
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Let Ci(s, t) be the coefficient of xi in the polynomial 2sP (x)− (2t− 1)xP ′(x), then the required
matrix is

MH =



0 0 · · · 0 C0

DH 0
... C1

0 DH

. . . C2

...
. . .

. . . 0
...

0 · · · 0 DH C2g


.

Lemma 5.2.2 (diagonal reduction). Let s ≥ 0, t ∈ Z and let DD(s, t) = 2t− 1 ∈ Z[s, t]. There
exists a matrix MD ∈ GL2g+1(Z[s, t]) such that the map δ−1DD(T )−1MD(s, t) reduce w ∈ Ws,t

to a cohomologous differential in Ws−1,t−1 and the entries of MD have degree at most 1.

Proof. For each 0 ≤ i ≤ 2g, there exist Ri, Si ∈ Z[x] with degRi ≥ 2g− 1 and degSi ≥ 2g, such
that

δxi = Ri(x)Q(x) + Si(x)Q′(x).

δxs+iy−2tdx

y
= (Ri(x)Q(x) + Si(x)Q′(x))xsy−2tdx

y
= xsRi(x)y−2t+2dx

y
+ 2xsSi(x)y−2tdy.

d(xsSi(x)y−2t+1) = (xsSi(x))′y−2t+2dx

y
+ (−2t+ 1)xsSi(x)y−2tdy

= (xsS ′i(x) + sxs−1Si(x))y−2t+2dx

y
− (2t− 1)xsSi(x)y−2tdy

xs+iy−2tdx

y
=

1

δ
(xsRi(x)y−2t+2dx

y
+ 2xsSi(x)y−2tdy)

≡ 1

δ

(
xsRi(x)y−2t+2dx

y
+

2(xsS ′i(x) + sxs−1Si(x))

2t− 1
y−2t+2dx

y

)
=

(2t− 1)xRi(x) + 2sSi(x) + 2xS ′i(x)

(2t− 1)δ
xs−1y−2t+2dx

y
.

Let MD be the matrix such that its (i + 1)th column consist of coefficients of the polynomial
(2t− 1)xRi(x) + 2sSi(x) + 2xS ′i(x).

Let c0 be the constant term of Q(x).

Lemma 5.2.3 (vertical reduction). Suppose c0 6= 0. Let s ≥ 0, t ∈ Z and let DV (s, t) = 2t−1 ∈
Z[t]. There exists a matrix MH ∈ GL2g+1(Z[s, t]) such that (c0δ)DV (T )−1Mv(s, t) 6= 0 reduce
w ∈ Ws,t to a cohomologous differential in Ws,t−1 and the entries of MH have degree at most 1.

Proof. Let Si and Ri be as defined in the proof of Lemma 5.2.2. Write Si(x) = hi + xT (x),
where hi ∈ Z, Ti ∈ Z[x], deg Ti ≤ 2g − 1.

xs+iy−2tdx

y
≡ (2t− 1)xRi(x) + 2sSi(x) + 2xS ′i(x)

(2t− 1)δ
xs−1y−2t+2dx

y

=
2hisx

s−1 + xs((2t− 1)Ri(x) + 2sT (x) + 2S ′i(x))

(2t− 1)δ
y−2t+2dx

y
.
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Write Q(x) = c0 + xP (x), where P ∈ Z[x] with degP ≥ 2g.

d(xsy−2t−1) =

(
sQ(x)− 2t− 3

2
xQ′(x)

)
xs−1y−2t+2dx

y

=

(
s(c0 + xP (x))− 2t− 3

2
xQ′(x)

)
xs−1y−2t+2dx

y

=

(
sc0x

s−1 − 1

2
((2t− 3)Q′(x)− 2sP (x))xs

)
y−2t+2dx

y

.

2sxs−1y−2t+2dx

y
≡ (2t− 3)Q′(x)− 2sP (x)

c0

xsy−2t+2dx

y
.

xs+iy−2tdx

y
≡ 2hisx

s−1 + xs ((2t− 1)Ri(x) + 2sT (x) + 2S ′i(x))

(2t− 1)δ
y−2t+2dx

y

≡ hi((2t− 3)Q′(x)− 2sP (x)) + c0((2t− 1)Ri(x) + 2sT (x) + 2S ′i(x))

(2t− 1)δc0

xsy−2t+2dx

y
.

Let MV be the matrix such that its (i + 1)th column consist of coefficients of the polynomial
hi((2t− 3)Q′(x)− 2sP (x)) + c0((2t− 1)Ri(x) + 2sT (x) + 2S ′i(x)).

We say (a, b) is admissible if it satisfies the following conditions:

(1). a, b ≥ 1 and b is odd;

(2). if c0 = 0, then b ≤ 2a.

Lemma 5.2.4 (Reduction towards zero). Let (a, b) be an admissible pair and r ≥ 1. There
exists a matrix Ma,b

r ∈ GL2g+1(Z) and Da,b
r such that the map (Da,b

r )−1Ma,b
r reduces a differential

ω ∈ Wa(2r+1)−1,(b(2r+1)−1)/2 to a cohomologous differential in Wa(2r−1)−1,(b(2r−1)−1)/2.

Proof. Let s = a(2r+ 1)− 1 and t = (b(2r+ a)− 1)/2. If b ≤ 2a, perform b diagonal reductions
followed by 2a− b horizontal reductions:

(s, t)

(s−1, t−1)

. . .

(s− 2a, t− b) . . . (s− b− 1, t− b) (s− b, t− b)
If b > 2a, perform 2a diagonal reductions followed by b− 2a vertical reductions:

(s, t)

(s−1, t−1)

. . .

(s− 2a, t− 2a)

(s− 2a, t− 2a− 1)

...

(s− 2a, t− b)
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Lemma 5.2.5 (Final reduction). Let (a, b) be an admissible pair. There exists a matrix Ma,b
0 ∈

GL2g+1(Z) and Da,b
0 such that the map (Da,b

0 )−1Ma,b
0 reduces a differential ω ∈ Wa−1,(b−1)/2 to a

cohomologous differential in W−1,0.

Proof. If b ≤ 2a, perform (b − 1)/2 diagonal reductions followed by a − (b − 1)/2 horizontal
reductions. If b > 2a, perform (b−1)/2−a vertical reductions followed by a diagonal reductions.

5.3 The Algorithm

We say (a, b) is p-admissible if it satisfies the following conditions:

(1). a, b ≥ 1 and b is odd;

(2). if p | c0, then b ≤ 2a;

(3). p - δ;

(4). p > (2g + 1)b+ 2a.

Note that if (a, b) is p-admissible, it is also admissible.
Let (a, b) be admissible, and let N ≥ 3, ν ≥ 1. We can compute Ua,b

p modulo pν simultane-
ously for all p < N such that (a, b) is p-admissible.

Assume N is even, and put B = N/2.
Let Ma,b

1 , . . . ,Ma,b
B−1 and Da,b

0 , . . . , Da,b
B−1 be as in Lemmas 5.2.4 and 5.2.5. Then the matrix

Ja,bp =
(
Da,b

0 . . . Da,b
(p−1)/2

)−1 (
Ma,b

0 . . .Ma,b
(p−1)/2

)
reduces any ω ∈ Wap−1,(bp−1)/2 to a cohomologous form in W−1,0. The coordinates of Ua,b

p are
given by the first column of Ja,bp .

5.3.1 Precision

As before, we need to find the p-adic precision lost in the reduction. We consider the p-adic
valuation of Da,b

0 . . . Da,b
(p−1)/2.

Lemma 5.3.1. We have ordp

(
Da,b

0 . . . Da,b
(p−1)/2

)
≤ (b− 1)/2 + max(0, 2a− b).

Proof. The contributions from the vertical and diagonal reduction comes from the factor 2t− 1
for t = 1, 2, . . . , (bp− 1)/2, δ and c0 do not contribute by assumptions. The integers divisible by
p are p, 3p, . . . , (b− 2)p. Since p > b, the contribution is exactly (b− 1)/2.

Horizontal reduction only happens when b ≤ 2a. The contributions come from (2g+ 1)(2t−
1)− 2s for a sequence of (s, t). As t ≤ (bp− 1)/2 and s ≤ ap− 1 so |(2g+ 1)(2t− 1)− 2s| < p2.
From Lemma 5.2.4, s = a(2r + 1) − b − 1 − j and t = (b(2r − 1) − 1)/2 for 1 ≤ r ≤ (p − 1)/2
and 0 ≤ j ≤ 2a− b. We have

(2g + 1)(2t− 1)− 2s = 2((2g + 1)b− 2a)r − ((2g + 1)(b+ 2) + 2(a− b− 1− j)).
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Since |(2g + 1)b− 2a| < p is odd, for each j, (2g + 1)(2t− 1)− 2s divisible by p for at most one
r. The 2a− b possible values of j give contribution of at most 2a− b. From Lemma 5.2.5, t = 0
and 0 ≤ s ≤ a−1− (b−1)/2. |(2g+1)(2t−1)−2s| ≤ 2g+1+2a < p so they do not contribute.

Hence ordp

(
Da,b

0 . . . D(p−1)/2

)a,b
≤ (b− 1)/2 + max(0, 2a− b).

The Weil conjectures imply that for each p, it suffices to compute the Frobenius matrix
modulo pNp where Np = dg/2 + (2g + 1) logp 2e, so the bound µ = dg/2 + (2g + 1) log3 2e works

for all p. For all p < N such that (a, b) is p-admissible, it suffices to compute Da,b
0 . . . Da,b

(p−1)/2

mod pλ and Ma,b
0 . . .Ma,b

(p−1)/2 mod pλ where λ = µ+ (b− 1)/2 + max(0, 2a− b) by the precision
estimate.

5.3.2 Computing Simultaneously for all Primes p < N

Let n, λ ≥ 1 and B ≥ 2 be integers. The reduction matrix is a product of matrices. To compute
Ma,b

0 . . .Ma,b
(p−1)/2 mod pλ, a matrix multiplying algorithm using an accumulating remainder tree

for matrices is adapted to compute this matrix for all primes p < 2B simultaneously.

Lemma 5.3.2. Given a sequence of matrices M0,M1, . . . ,MB−1 ∈ GLn(Z), then we may com-
pute M0M1 . . .M(p−1)/2 mod pλ for all primes 3 ≤ p < 2B simultaneously.

Proof. Let l = dlog2Be. Construct binary trees of depth l, whose nodes are indexed by the pairs
(i, j) with 0 ≤ i ≤ l and 0 ≤ j < 2i. The root node is (0, 0), the children of (i, j) are (i+ 1, 2j)
and (i+ 1, 2j + 1) and the leaf nodes are (l, j) for 0 ≤ j < 2l.

(0,0)

(1,1)

(2,3)

...

(l, 2l − 1)(l, 2l − 2)

...

(2,2)

...
...

(1,0)

(2,1)

...

. . .

...

(2,0)

...
...

(l, 1)(l, 0)

For each node (i, j), define

Ui,j =

{
k ∈ Z

∣∣∣∣ jB2i ≤ k <
(j + 1)B

2i

}
,

Pi,j =
∏

p prime
(p−1)/2∈Ui,j

pλ,

Ai,j =
∏
k∈Ui,j

Mk+1 = MdjB/2ie . . .Mb(j+1)B/2ic,

Ci,j = M0Ai,0Ai,1 . . . Ai,j−1 mod Pi,j.
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For convenience, put MB = I. Note that at the leaf nodes, |Ul,j| = 0 or 1 for every j. For
every 0 ≤ k < B, Ul,j = {k} for j = b2lk/Bc.

Compute the values of the Pi,j tree. Enumerate primes less than 2B, work from the bottom
of the tree to the top, using the relation Pi,j = Pi+1,2jPi+1,2j+1.

Similarly compute the Ai,j tree from the bottom of the tree to the top, using the relation
Ai,j = Ai+1,2jAi+1,2j+1.

For the Ci,j tree, work from the top of the tree to the bottom, using the initial condition
C0,0 = M0 mod P0,0 and the relations

Ci+1,2j = Ci,j mod Pi+1,2j,

Ci+1,2j+1 = Ci,jAi+1,2j mod Pi+1,2j+1.

Suppose 3 ≤ p < 2B, choose j = b2l−1(p−1)/Bc such that Ul,j = {(p−1)/2}, then Pl,j = pλ

and Cl,j = M0M1 . . .M(p−1)/2 mod pλ, so the output can be recovered from the leaf nodes of
the Ci,j tree.

5.3.3 Recovering the Matrix of the Frobenius

By Lemma 5.1.1,

σp

(
xidx

y

)
≡

µ−1∑
j=0

(2g+1)j∑
r=0

pαjCj,rU
i+r+1,2j+1
p mod pµ.

Our aim is to find the Ua,b
p mod pµ in the expression, i.e. (a, b) = (i + r + 1, 2j + 1) for

0 ≤ i ≤ 2g − 1, 0 ≤ j ≤ µ− 1 and 0 ≤ r ≤ (2g + 1)j. We find the ranges of a and b,

1 ≤ a = i+ r + 1 ≤ 2g − 1 + (2g + 1)j ≤ 2g − 1 + (2g + 1)(µ− 1) = (2g + 1)µ− 2,

1 ≤ b = 2j + 1 ≤ 2(µ− 1) + 1 = 2µ− 1.

For each admissible (a, b) ∈ [1, (2g + 1)µ − 2] × [1, 2µ − 1], using the accumulating remainder
tree method, compute Ma,b

0 . . .Ma,b
(p−1)/2 mod pλ simultaneously for all p < N . Then compute

Ja,bp =
(
Da,b

0 . . . Da,b
(p−1)/2

)−1 (
Ma,b

0 . . .Ma,b
(p−1)/2

)
mod pµ and we can recover each Ua,b

p mod pµ

from the first column of Ja,bp .
For (a, b) not p-admissible, Kedlaya’s algorithm is applied for each p.
Then the matrix of the Frobenius can be recovered for all p < N .



Chapter 6

Computing Data for the Sato-Tate
Conjecture

This chapter is mainly based on [Ked15]. Construction of the Sato-Tate group is from [Fit15]
and [FKRS12]. [FKRS12] provides a detailed coverage on the generalised Sato-Tate Conjecture,
from the theoretical background to computational results, focusing on abelian surfaces.

We will denote q a prime ideal over a number field K with norm q, where q is a power of a
prime p.

6.1 Sato-Tate Conjecture for Elliptic Curves

A special case of the Weil conjectures, proved by Weil, shows that for an elliptic curve E over a
finite field Fq,

Z(E/Fq;T ) =
P (T )

(1− qT )(1− T )
,

where P (T ) = (1− α1T )(1− α2T ) = qT 2 − aqT + 1 ∈ Z[T ] with degree 2g. We have

#E(Fq) = q + 1− (α1 + α2) = q + 1− aq,

and the Hasse-Weil bound gives
|aq| ≤ 2

√
q.

It is natural to consider the behaviour of the coefficient aq.
Now let E : y2 = x3 + Ax + B be an elliptic curve over Q. Consider primes p at which E

reduced modulo p gives an elliptic curve Ep over Fp, i.e. primes not dividing the discriminant
∆ = −16(4A3 + 27B2). Note that we are only excluding a finite number of primes. Normalise
ap by defining

āp =
ap√
p
∈ [−2, 2].

If E is defined over a number field K, we consider the reduction Eq of E modulo prime
ideals q with norm q of the integer ring, then Eq is a polynomial over the residue field Fq. aq is
normalised by defining

āq =
aq√
q
∈ [−2, 2].

47
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We are interested to see how āq varies in the interval [−2, 2] for different prime ideals q for
a fixed curve.

Definition 6.1.1 (complex multiplication). For m ∈ Z, [m] : E → E is a morphism defined by

[m](P ) =


P + · · ·+ P (m copies) if m > 0

O if m = 0

[−m](−P ) if m < 0

.

End(E) denotes the endomorphism ring of E/K. E has no complex multiplication if

[ ] : Z→ End(E)

is an isomorphism, i.e. End(E) ∼= Z. Otherwise, End(E) is a finitely generated Z-module and
satisfies End(E)⊗Q = M for some field M ⊇ K, and we say E has complex multiplication over
M .

We call an elliptic curve generic if it has no complex multiplication.
Sato and Tate independently conjectured that for any generic elliptic curve, the sequence

āq follows the same distribution. To state the conjecture precisely, we need to formalise the
definition of equidistribution.

Definition 6.1.2 (equidistribution). The sequence {āq} is equidistributed with respect to the
measure µ on [−2, 2] if for any continuous function f ,

lim
N→∞

∑
q≤N f(āq)

#{q : q ≤ N}
=

∫ 2

−2

fdµ.

Theorem 6.1.3 (Sato-Tate). Suppose E is an elliptic curve over Q with no complex multipli-
cation, then {āq} is equidistributed with respect to the measure µ on [−2, 2] where

dµ =

√
4− z2dz

2π
.

We can think of
√

4− z2/2π as the density function of āp on [−2, 2].
Note that the Sato-Tate conjecture can be extended to elliptic curves over any number field

K, but it is only proved under certain conditions, for example when K is totally real [BLGG11].
The equidistribution property also extends to elliptic curves without complex multiplication.

Theorem 6.1.4 (Sato-Tate for CM elliptic curves). Suppose E is an elliptic curve over a number
field K with complex multiplication in M . If M ⊆ K, then {āq} is equidistributed with respect
to the measure µ on [−2, 2], where

dµ =
dz

π
√

4− z2
.

If M * K, then {āq} is equidistributed with respect to the measure µcont +µdisc on [−2, 2], where

dµcont =
dz

2π
√

4− z2

and µdisc = δ/2 where δ is a Dirac point measure concentrated at 0.
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6.2 Generalising to Abelian Varieties

The conjecture can be extended to abelian varieties, taking account for extra structures analo-
gous to complex multiplication in the elliptic case.

6.2.1 Finding a Group that Defines the Distribution

Definition 6.2.1 (abelian variety). An abelian variety is a complete algebraic variety that is
also an algebraic group with group operations defined by regular functions. An abelian surface is
an abelian variety of dimension 2.

For instance, the Jacobian variety attached to a hyperelliptic curve of genus g is an abelian
variety of dimension g.

Let A be an abelian variety of dimension g ≥ 1 over a number field K. For each prime ideal
q where A has good reduction, reduce modulo q to obtain an abelian variety Aq over Fq. Then
by Weil,

Z(Aq/Fq;T ) =
P1(T ) . . . P2g−1(T )

P0(T ) . . . P2g(T )
,

where Pk(T ) =
∏

1≤i1<···<ik≤2g(1− αi1 . . . αikT ) ∈ Z[T ]. Note that P1 determines the whole zeta

function. Let Pq(T ) := P1(T ) =
∏2g

j=1(1− αjT ) = qgT 2g + a2g−1,qT
2g−1 + · · ·+ 1. We have

#A(Fq) =

2g∏
j=1

(1− αj),

αjαg+j = q for k = 1, . . . , g, and |αj| = q1/2 for j = 1, . . . , 2g. Normalise the polynomial
P̄q(T ) := Pq(T/

√
q), then P̄ (1/T ) = T−2gP̄ (T ).

We will study how Pq varies with q for fixed abelian varieties. If A is a Jacobian variety
associated to a curve C, then Pq(T ) of A is the numerator of the zeta function of Cq the
reduction of C at q, i.e.

Z(Cq/Fq;T ) =
Pq(T )

(1− T )(1− qT )
.

Hence, when we look for examples, we can consider Jacobian varieties associated to curves as
Pq(T ) can be recovered from the zeta function of the curve.

Definition 6.2.2 (topological group). A topological group is a group which is also a topological
space such that the group operations are continuous maps.

Definition 6.2.3 (Lie group). A Lie group is a smooth manifold which is also a group such that
the group operations are smooth maps.

Theorem 6.2.4. Any compact topological group admits a unique translation-invariant measure
called the Haar measure. For a finite group with discrete topology, the Haar measure is the
uniform measure.

The aim is to define a topological group that would give us the correct measure that agrees
with the distribution of the polynomials P̄q(T ) for abelian varieties.
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By Weil, the roots of P̄q(T ) lie on the unit circle and occur in reciprocal pairs. Hence
P̄q(T ) occurs as the characteristic polynomial of some matrix in the group USp(2g) of unitary
symplectic matrices.

USp(2g) = {M ∈ GL2g(C) |M−1 = M∗,MTJM = J},

where

J =

J1 0
. . .

0 J1

 , J1 =

(
0 1
−1 0

)
.

A matrix is unitary, i.e. M−1 = M∗ is equivalent to saying it is normal and its eigenvalues
have norm 1. A matrix is symplectic, i.e. MTJM = J if and only if its characteristic polynomial
is a reciprocal polynomial. Normal matrices over C are similar if and only if they have the same
characteristic polynomial. Hence Conj(USp(2g)) can be identified with the space of reciprocal
polynomials with roots on the unit circle.

The Sato-Tate group STA is defined as a compact Lie group which is a subgroup of USp(2g),
so that a sequence {sq} ⊂ Conj(STA) corresponding to Pq(T ) are equidistributed with respect
to the image on Conj(STA) of the normalised Haar measure µSTA . For any continuous function
f : Conj(STA)→ C,

µSTA(f) = lim
n→∞

∑
q≤n f(sq)

#{q : q ≤ n}
.

6.2.2 Sato-Tate group of Elliptic Curves with Complex Multiplica-
tion

Here we present the construction of the Sato-Tate group for elliptic curves with complex multi-
plication as given in Section 2.4.2 in [Fit15].

Suppose E is an elliptic curve over K with complex multiplication in K. Let N be the
conductor of E, which is a product of all the bad primes, each with some exponent. Let S be
the set of bad primes. For any good prime q, Pq(T ) = (1−α1T )(1−α2T ) = qT 2−aqT+1 ∈ Z[T ].
We see that α1 and α2 are complex conjugates and

#E(Fq) = q + 1− aq.

By a result of Deuring, there exists an algebraic Hecke character ψE of K of modulo N and
infinity-type 1 that is attached to E such that aq = ψE(q) + ψE(q).

The L-function of ψE is L(ψE, s) =
∏

q(1 − ψE(q)q−s)−1. The unitary group of degree 1
is U(1) = {u ∈ C× | uu = 1}. Let µ be the Haar measure of U(1). For q /∈ S, define
xq := ψE(q)/q1/2 ∈ U(1).

Lemma 6.2.5. Let G be a compact group and let X denote the set of conjugacy classes of G.
Let {xq} be a sequence in X. Suppose for any irreducible nontrivial representation % of G, the
Euler product L(%, s) extends to a holomorphic function on Re(s) ≥ 1 and is nonvanishing in
Re(s) ≥ 1. Then the sequence {xq} is µ-equidistributed over X.

Proof. See Corollary 2.7 of [Fit15].
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Lemma 6.2.6. {xq} is µ-equidistributed on U(1).

Proof. The nontrivial irreducible characters of U(1) are φa : U(1) → C× for a ∈ Z×. By
Lemma 6.2.5, taking G = U(1), we have X = U(1) and it is sufficient to show that L(φa, s)
is holomorphic and nonvanishing for Re(s) ≥ 1. This follows from the fact that a nontrivial
power of ψE are Hecke characters and the L-function of a nontrivial unitarised Hecke character
is holomorphic and nonvanishing for Re(s) ≥ 1. See Theorem 2.4 of [Fit15].

Lemma 6.2.7. {āq} is equidistributed on [−2, 2] with respect to dz
π
√

4−z2 .

Proof. āq = xq + xq. By Lemma 6.2.6, xq is µ-equidistributed on U(1). The Haar measure is
translation-invariant so µ is the uniform measure on U(1). The projection of U(1) on [−2, 2] by
u 7→ u+ u is the measure dz

π
√

4−z2 .

6.2.3 Construction of the Sato-Tate Group

We will sketch the construction of the Sato-Tate group for general abelian varieties. Details of
the construction can be found in Section 2 of [FKRS12].

Definition 6.2.8 (Tate module). The `-adic Tate module of A is the group V`(A) = lim←A[`n],
where A[`n] is the `n torsion group of A and the inverse limit is taken with respect to the maps
A[`n+1]→ A[`n].

Remark 15. We can make the identifications V`(A) ' H1,et(AC,Q`) ' H1(AtopC ,Q), where
H1,et(AC,Q`) is the étale homology group and H1(AtopC ,Q) is the singular homology group.

The action of the absolute Galois group GK = Gal(Kalg/K) on the rational `-adic Tate
module Vl(A) defines an `-adic representation

% : GK → Aut(V`(A)) ⊆ GL2g(Q`).

Let S be the set of bad primes. For q /∈ S, Pq(T ) = Lq(%, T ) = det(1 − %(F−1
q )T, V`(A)),

where F−1
q is the geometric Frobenius.

Definition 6.2.9 (cyclotomic character). The `-adic cyclotomic character χ` : GK → Z×` is
defined as follows: for any g ∈ GK and any primitive `nth root of unity ζn in K×, g : ζn 7→ ζann
for some an ∈ (Z/`nZ)×, then χ` : g 7→ (an)n∈N.

Let G` = %(kerχ`)
Zar be the Zariski closure of the image of the kernel of the cyclotomic

character χ`.

Definition 6.2.10 (Sato-Tate group). Pick an embedding ι : Q` ↪→ C and let G`,ι = G` ⊗ι C.
The Sato-Tate group ST (A) is defined to be the maximal compact subgroup of G`,ι.

The group is only defined up to conjugation but this is sufficient for the purpose of proving
equidistributions. We take xq as the conjugacy class of %(F−1

q )⊗ q−1/2. Then

P̄q(T ) = Lq(%, T/q
1/2) = det(1− xqT, V`(A)⊗ι C).
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6.2.4 The Generalised Sato-Tate Conjecture

For g = 1, no extra structure means no complex multiplication. In fact, for g ≤ 3, no extra
structure means the endomorphism ring consists of only multiplication by integers. For g > 3,
the exclusion of extra endomorphisms is not sufficient, but we will not include the technicalities
here.

When A has no extra structure, the Sato-Tate group is USp(2g), but when A has extra
structure, the group is cut down to a smaller subgroup.

Conjecture 6.2.11 (Generalised Sato-Tate Conjecture). Let A be an abelian variety of di-
mension g over a number field K, then the sequence {xq} in Conj(STA) corresponding to the
polynomials P̄ (T ) is equidistributed with respect to the image of Haar measure.

6.3 Distributions for Elliptic Curves

The examples in the section are computed in Sage and the code can be found in Appendix B.1.

6.3.1 Generic Case

In the generic case, the Sato-Tate group is SU(2) and an example is the curve y2 = x3 + x + 1
over Q. We have the polynomials

P̄q(T ) = T 2 − āqT + 1.

We plot the histogram of āq and the expected distribution:
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6.3.2 Complex Multiplication in Base Field

If an elliptic curve over K has complex multiplication in K, its Sato-Tate group is U(1). An
example is the curve y2 = x3 + 1 over Q(

√
−3).
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We plot the histogram of āq and the expected distribution:
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6.3.3 Complex Multiplication not in Base Field

If an elliptic curve over K has complex multiplication in some field not contained in K, its
Sato-Tate group is N(U(1)). We can look at y2 = x3 + 1 over Q.

We plot the histogram of āq and the continuous part of the expected distribution:
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Note that there is a Dirac point measure concentrated at 0.

6.4 Computing Data for Abelian Surfaces

Abelian surfaces are of dimension 2, so we can consider the case when they are Jacobian varieties
of genus 2 curves. In [FKRS12], possible Sato-Tate groups were studied and an exhaustive search
was done to numerically test the Sato-Tate conjecture for abelian surfaces. The normalised
polynomial in the numerator of the zeta function of a genus 2 curve modulo q is in the form

P̄q(T ) = T 4 + ā1,qT
3 + ā2,qT

2 + ā1,qT + 1.
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It turns out that considering only ā1,q is insufficient, so we have to take ā2,q into account. Generic
group algorithms were applied in [FKRS12] to compute the group orders of the Jacobian of the
curves to obtain the coefficients ā1,q and ā2,q since they were more practical in the settings,
namely for q < 230, although asymptotically Harvey’s algorithm in [Har14] is more efficient.

Theorem 6.4.1 (Fité-Roger-Kedlaya-Sutherland). Up to conjugation within USp(4), there are
exactly 52 groups that occur as Sato-Tate groups of abelian surfaces over number fields, all of
which can be realised using genus 2 curves. Of these groups, exactly 34 groups occur for abelian
surfaces over Q, all of which can be realised using genus 2 curves over Q.

Examples and data for all 52 possible Sato-Tate groups of abelian surfaces were tabulated
in [FKRS12]. In practise, to determine the Sato-Tate group of the Jacobian variety of a given
hyperelliptic curve of genus 2, one can compute the moments of the distribution of the coefficients
ā1,q and ā2,q and compare against the standard table in [FKRS12] to identify the Sato-Tate group
of the abelian surface.

Notice the increase in the number of groups compared to that in the genus 1 case, where
there are only 3 possible groups. There could be an explosion in the number of groups for higher
genus cases, which means it might not be practical to obtain a list of all possible distributions
using the same method for abelian varieties of higher dimensions g ≥ 3.

Here we will obtain visualisations of the distributions for some examples of abelian surfaces
which correspond to hyperelliptic curves of genus 2.

6.4.1 Generic case

The generic case we have USp(4) as the Sato-Tate group, an example is the Jacobian variety of
the curve y2 = x5 − x+ 1 over Q.

We obtain the histogram of ā1,q:
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and the histogram of ā2,q:
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The joint distribution of (ā1,q, ā2,q):
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6.4.2 C2

One of the 51 possible Sato-Tate groups of abelian surfaces with extra structures is C2. An
example is the Jacobian variety of the curve y2 = x5 − x over Q(

√
−2).
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We obtain the histogram of ā1,q:

-4 -3 -2 -1 1 2 3 4

1000

2000

3000

4000

5000

and the histogram of ā2,q:
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The joint distribution of (ā1,q, ā2,q):
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Appendix A

Implementation of Kedlaya’s Algorithm

This is the computation done in SageMath for the elliptic curve y2 = x3 +x+ 1 and prime p = 5
in Section 4.7.

q = 5

p,a = list(q.factor())[0]

Q_x.<x> = PolynomialRing(QQ)

Q = x^3+x+1

dQ = diff(Q,x)

Q.discriminant().factor()

-1 * 31

g = (Q.degree()-1)/2

n = ceil(g*a/2+(2*g+1)*log(2,p))

m = n+1

while m-max(floor(log(2*m-1,p)),floor(log(2*g+1,p))) < n: m = m+1

n1 = n+max(floor(log(2*m-3,p)),floor(log(2*g+1,p)))+floor(log(2*g-1,p))+1

print "n1 = %s, m = %s, n = %s"%(n1, m, n)

n1 = 3, m = 3, n = 2

Q_xz.<x,z> = PolynomialRing(QQ)

frob = Q_x.hom([x^p])

E = (frob(Q)-Q^p)/p

I = Q_xz.ideal(Q*z^2-1)

Zpring = Zp(p, n1, ’capped-abs’,print_mode=’terse’,print_pos=True)

Zp_x.<x> = PolynomialRing(Zpring)

Zp_xz.<z> = PolynomialRing(Zp_x)

Qpring = Qp(p, n1, print_mode=’series’,print_pos=True)

Z_x.<x> = PolynomialRing(ZZ)

f = [Zp_xz(I.reduce(sum([binomial(-1/2,k)*p^(k+1)*x^(p*(i+1)-1)*E^k*z^(p*(2*k+1))\

for k in [0..m-1]]))).change_ring(Z_x) for i in [0..2*g-1]]

maxj=[(f[j].degree(z)-1)/2 for j in [0..2*g-1]]

57



58 APPENDIX A. IMPLEMENTATION OF KEDLAYA’S ALGORITHM

F=[[f[j][2*i+1] for i in [0.. maxj[j]]] for j in [0..2*g-1]]

for j in [0..2*g-1]:

for i in [0.. maxj[j]]:

print "F(%s,%s): %s"%(j,i,F[j][i])

F(0,0): 0

F(0,1): 5*x

F(0,2): 70*x^2 + 70*x + 25

F(0,3): 50*x^2 + 50*x

F(0,4): 75*x + 50

F(0,5): 50*x^2 + 50*x + 100

F(0,6): 75*x^2 + 100*x + 25

F(0,7): 25*x + 50

F(1,0): 5*x^3 + 65*x + 65

F(1,1): 15*x^2 + 30*x + 85

F(1,2): 85*x^2 + 90*x + 50

F(1,3): 75*x^2 + 100

F(1,4): 25*x^2 + 75*x + 75

F(1,5): 50*x^2 + 100*x + 100

F(1,6): 25*x^2 + 50*x + 75

F(1,7): 100*x^2 + 100*x + 75

Qdeg=Q.degree()

dQdeg=dQ.degree()

T=matrix(Qdeg+dQdeg)

for i in [0..dQdeg-1]:

for j in [0..Qdeg]: T[i+j,i]=Q[j]

for i in [0..Qdeg-1]:

for j in [0..dQdeg]: T[i+j,i+Qdeg-1]=dQ[j]

T

[1 0 1 0 0]

[1 1 0 1 0]

[0 1 3 0 1]

[1 0 0 3 0]

[0 1 0 0 3]

Tinv = T.inverse()

O_dQ = sum([(O(p^n1))*x^i for i in [0..dQdeg-1]])

O_Q = sum([(O(p^n1))*x^i for i in [0..Qdeg-1]])

S = [F[j][maxj[j]]for j in [0..2*g-1]]

for j in [0..2*g-1]:

print "reduce (x^%s zdx)^sigma"%j

k = maxj[j]

print "S(%s,%s) = %s"%(j,k,S[j])
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while k>0:

v = zero_vector(QQ,Qdeg+dQdeg)

for i in [0..S[j].degree()]:

v[i] = S[j][i]

AB = Tinv*v

A = sum([(AB[i])*x^i for i in [0..dQdeg-1]])

print "A(%s,%s) = %s"%(j,k,A+O_dQ)

B = sum([(AB[i+dQdeg])*x^i for i in [0..Qdeg-1]])

print "B(%s,%s) = %s"%(j,k,B+O_Q)

k = k-1

S[j] = F[j][k]+A+2*diff(B,x)/(2*k+1)

print "S(%s,%s) = %s"%(j,k,S[j]+O_Q)

reduce (x^0 zdx)^sigma

S(0,7) = 25*x + 50

A(0,7) = (5^2 + O(5^3))*x + (O(5^3))

B(0,7) = (3*5^2 + O(5^3))*x^2 + (O(5^3))*x + (2*5^2 + O(5^3))

S(0,6) = (3*5^2 + O(5^3))*x^2 + (4*5^2 + O(5^3))*x + (5^2 + O(5^3))

A(0,6) = (3*5^2 + O(5^3))*x + (4*5^2 + O(5^3))

B(0,6) = (4*5^2 + O(5^3))*x^2 + (2*5^2 + O(5^3))*x + (2*5^2 + O(5^3))

S(0,5) = (2*5^2 + O(5^3))*x^2 + (5^2 + O(5^3))*x + (2*5^2 + O(5^3))

A(0,5) = (3*5^2 + O(5^3))*x + (2*5^2 + O(5^3))

B(0,5) = (4*5^2 + O(5^3))*x^2 + (5^2 + O(5^3))*x + (O(5^3))

S(0,4) = (O(5^3))*x^2 + (O(5^3))*x + (2*5^2 + O(5^3))

A(0,4) = (4*5^2 + O(5^3))*x + (4*5^2 + O(5^3))

B(0,4) = (2*5^2 + O(5^3))*x^2 + (2*5^2 + O(5^3))*x + (3*5^2 + O(5^3))

S(0,3) = (2*5^2 + O(5^3))*x^2 + (O(5^3))*x + (5^2 + O(5^3))

A(0,3) = (4*5^2 + O(5^3))*x + (4*5^2 + O(5^3))

B(0,3) = (2*5^2 + O(5^3))*x^2 + (2*5^2 + O(5^3))*x + (2*5^2 + O(5^3))

S(0,2) = (4*5 + 2*5^2 + O(5^3))*x^2 + (2*5 + O(5^3))*x + (4*5 + O(5^3))

A(0,2) = (5 + 2*5^2 + O(5^3))*x + (4*5 + 4*5^2 + O(5^3))

B(0,2) = (3*5 + 2*5^2 + O(5^3))*x^2 + (2*5 + 3*5^2 + O(5^3))*x + (5^2 + O(5^3))

S(0,1) = (O(5^3))*x^2 + (5 + 4*5^2 + O(5^3))*x + (2*5 + O(5^3))

A(0,1) = (5 + O(5^3))*x + (5^2 + O(5^3))

B(0,1) = (3*5 + 5^2 + O(5^3))*x^2 + (3*5^2 + O(5^3))*x + (2*5 + 4*5^2 + O(5^3))

S(0,0) = (O(5^3))*x^2 + (3*5 + 5^2 + O(5^3))*x + (2*5^2 + O(5^3))

reduce (x^1 zdx)^sigma

S(1,7) = 100*x^2 + 100*x + 75

A(1,7) = (3*5^2 + O(5^3))*x + (4*5^2 + O(5^3))

B(1,7) = (4*5^2 + O(5^3))*x^2 + (2*5^2 + O(5^3))*x + (4*5^2 + O(5^3))

S(1,6) = (5^2 + O(5^3))*x^2 + (2*5^2 + O(5^3))*x + (O(5^3))

A(1,6) = (O(5^3))*x + (3*5^2 + O(5^3))

B(1,6) = (O(5^3))*x^2 + (4*5^2 + O(5^3))*x + (2*5^2 + O(5^3))

S(1,5) = (2*5^2 + O(5^3))*x^2 + (4*5^2 + O(5^3))*x + (O(5^3))

A(1,5) = (O(5^3))*x + (5^2 + O(5^3))

B(1,5) = (O(5^3))*x^2 + (3*5^2 + O(5^3))*x + (4*5^2 + O(5^3))
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S(1,4) = (5^2 + O(5^3))*x^2 + (3*5^2 + O(5^3))*x + (3*5^2 + O(5^3))

A(1,4) = (3*5^2 + O(5^3))*x + (O(5^3))

B(1,4) = (4*5^2 + O(5^3))*x^2 + (O(5^3))*x + (3*5^2 + O(5^3))

S(1,3) = (3*5^2 + O(5^3))*x^2 + (5^2 + O(5^3))*x + (4*5^2 + O(5^3))

A(1,3) = (3*5^2 + O(5^3))*x + (2*5^2 + O(5^3))

B(1,3) = (4*5^2 + O(5^3))*x^2 + (5^2 + O(5^3))*x + (2*5^2 + O(5^3))

S(1,2) = (2*5 + 3*5^2 + O(5^3))*x^2 + (4*5 + 2*5^2 + O(5^3))*x + (2*5 + O(5^3))

A(1,2) = (4*5 + 4*5^2 + O(5^3))*x + (2*5^2 + O(5^3))

B(1,2) = (2*5 + 3*5^2 + O(5^3))*x^2 + (5^2 + O(5^3))*x + (2*5 + 3*5^2 + O(5^3))

S(1,1) = (3*5 + O(5^3))*x^2 + (5 + 2*5^2 + O(5^3))*x + (2*5 + 4*5^2 + O(5^3))

A(1,1) = (4*5 + 4*5^2 + O(5^3))*x + (3*5 + 3*5^2 + O(5^3))

B(1,1) = (2*5 + 3*5^2 + O(5^3))*x^2 + (4*5 + 3*5^2 + O(5^3))*x + (4*5 + O(5^3))

for j in [0..2*g-1]:

S[j]=S[j].change_ring(Zpring)

print "S(%s,0) = %s"%(j,S[j])

S(0,0) = (40 + O(5^3))*x + (50 + O(5^3))

S(1,0) = (5 + O(5^3))*x^3 + (0 + O(5^3))*x^2 + (25 + O(5^3))*x + (95 + O(5^3))

sdeg=[S[j].degree() for j in [0..2*g-1]]

for j in [0..2*g-1]:

while sdeg[j]>2*g-1:

k=sdeg[j]-2*g

red_poly=Q_x(x^k*dQ+2*k*x^(k-1)*Q)

red_poly

S[j]=S[j]-S[j][sdeg[j]]*red_poly/red_poly[k+2*g]

sdeg[j]=S[j].degree()

print "G(%s,0) = %s"%(j,S[j])

G(0,0) = (40 + O(5^3))*x + (50 + O(5^3))

5*x^3 + 3*x + 2

G(1,0) = (0 + O(5^3))*x^3 + (0 + O(5^3))*x^2 + (22 + O(5^2))*x + (18 + O(5^2))

M=matrix([[S[i][j]+O(p^n) for i in[0..2*g-1]] for j in[0..2*g-1]])

M

[ 0 + O(5^2) 18 + O(5^2)]

[15 + O(5^2) 22 + O(5^2)]

M.charpoly()

(1 + O(5^3))*x^2 + (3 + O(5^2))*x + (5 + O(5^2))
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Computations of Sato-Tate
Distributions

The following are computations done in SageMath for the examples in Sections 6.3 and 6.4.

B.1 Elliptic curves

B.1.1 Generic case

We compute for the curve y2 = x3 + x+ 1 over Q in Section 6.3.1.
We define a function nag1 to compute āq. For each q, the required precision N is computed,

then Kedlaya’s algorithm in [Ked01] matrix of frobenius hyperelliptic is used when p ≤
(2g + 1)(2N − 1) and Harvey’s optimisation in [Har07] hypellfrob is used when p > (2g +
1)(2N − 1).

from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob

def nag1(q, Q):

p,n=list(q.factor())[0]

if Q.discriminant()%p<>0:

prec=ceil(n/2+log(4,p))

prec1=prec+floor(log(3,p))

R.<x>=PolynomialRing(ZZ)

if p>3*(2*prec-1):

A=hypellfrob(p, prec, R(Q))

else:

A,f=monsky_washnitzer.matrix_of_frobenius_hyperelliptic(\

R(Q), p, prec1)

A=A^n

a=ZZ(Integers(p**prec)(-A.trace()))

bound=2*q^(1/2)

if a>bound:a=a-p^prec

return -a/q^(1/2).n(digits=3)

Here we compute for primes up to 105.

61
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R.<x> = QQ[’x’]

Q1=x^3+x+1

D1=[]

for p in primes(3, 10^5):

g=nag1(p,Q1)

if g is not None:

D1.append(g)

H1=histogram(D1, bins=25)

L1=plot((4*len(D1)/25)*sqrt(4-x^2)/(2*pi), (x,-2,2), color=’red’)

H1+L1

B.1.2 Complex multiplication in base field

We compute for the curve y2 = x3 + 1 over Q(
√
−3) in Section 6.3.2.

First, we find a list of all prime ideals q with norm less than 105 by factorising the ideals (p)
and get a list of their norms q.

R.<x> = QQ[’x’]

minpoly=x^2 + 3

K.<w> = NumberField(minpoly)

Q2=x^3+1

qlist=[]

for p in primes(3, 10^5):

F=K.ideal(p).factor()

for I,h in list(F):

q=I.norm()

if q<10^5:

qlist.append(q)

qcounted=[(q,qlist.count(q)) for q in uniq(qlist)]

qcounted contains pairs (q, n) where n is the number of times q appeared. Run the function for
all q in the list qcounted.

D2=[]

for q,a in qcounted:

g=nag1(q,Q2)

if g is not None:

for i in [1..a]:

D2.append(g)

H2=histogram(D2, bins=25)

L2=plot((4*len(D2)/25)/(pi*sqrt(4-x^2)), (x,-1.96,1.96), color=’red’)

H2+L2
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B.1.3 Complex multiplication not in base field

We compute for the curve y2 = x3 + 1 over Q in Section 6.3.3.

R.<x> = QQ[’x’]

Q3=x^3+1

D3=[]

for p in primes(3, 10^5):

g=nag1(p,Q3)

if g is not None:

D3.append(g)

H3 = histogram(D3, bins=25)

L3 = plot((4*len(D3)/25)/(2*pi*sqrt(4-x^2)), (x,-1.96,1.96), color=’red’)

H3+L3

B.2 Genus 2 curves

B.2.1 Generic case

We compute for the curve y2 = x5−x+ 1 over Q in Section 6.4.1. By modifying nag1, we define
a new function nag2 to find the pairs (ā1,q, ā2,q).

from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob

def nag2(q, Q):

p,n=list(q.factor())[0]

if Q.discriminant()%p<>0:

prec=ceil(n+log(12,p))

prec1=prec+floor(log(5,p))

R.<x>=PolynomialRing(ZZ)

if p>5*(2*prec-1):

A=hypellfrob(p, prec, R(Q))

else:

A,f=monsky_washnitzer.matrix_of_frobenius_hyperelliptic(\

R(Q), p, prec1)

A=A^n

P=A.charpoly()

a1=ZZ(Integers(p**prec)(P[3]))

a2=ZZ(Integers(p**prec)(P[2]))

bound=6*q

if a1>bound:a1=a1-p^prec

if a2>bound:a2=a2-p^prec

return (a1/q^(1/2).n(digits=3),a2/q.n(digits=3))

R.<x> = QQ[’x’]

Q1=x^5-x+1

D1=[]
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for p in primes(3, 10^5):

g=nag2(p,Q1)

if g is not None:

D1.append(g)

a1=[D1[i][0] for i in [0..len(D1)-1]]

a2=[D1[i][1] for i in [0..len(D1)-1]]

histogram(a1, bins=25)

histogram(a2, bins=25)

list_plot(D1, alpha=0.5)

B.2.2 C2

We compute for the curve Q(x) = x5 − x over Q(
√
−2) in Section 6.4.2. As in the elliptic case,

we need to find a list of all prime ideals q with norm less than 105.

R.<x> = QQ[’x’]

minpoly=x^2 + 2

K.<w> = NumberField(minpoly)

Q2=x^5-x

qlist=[]

for p in primes(3, 10^5):

F=K.ideal(p).factor()

for I,h in list(F):

q=I.norm()

if q<10^5:

qlist.append(q)

qcounted=[(q,qlist.count(q)) for q in uniq(qlist)]

D2=[]

for q,a in qcounted:

g=nag2(q,Q2)

if g is not None:

for i in [1..a]:

D2.append(g)

aa1=[D2[i][0] for i in [0..len(D2)-1]]

aa2=[D2[i][1] for i in [0..len(D2)-1]]

histogram(aa1, bins=25)

histogram(aa2, bins=25)

list_plot(D2, alpha=0.5)
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p-adiques, Inst. Hautes Études Sci. Publ. Math. (1962), no. 12, 69–85.

[Ser94] , Propriétés conjecturales des groupes de Galois motiviques et des
représentations l-adiques, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math.,
vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 377–400.

[Sti09] Henning Stichtenoth, Algebraic function fields and codes, second ed., Graduate Texts
in Mathematics, vol. 254, Springer-Verlag, Berlin, 2009.

[vdP86] Marius van der Put, The cohomology of Monsky and Washnitzer, Mém. Soc. Math.
France (N.S.) (1986), no. 23, 4, 33–59, Introductions aux cohomologies p-adiques
(Luminy, 1984).
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